Kitobni o'qish: «Просто электричество»

Shrift:

© Фейгин О. О., 2017, текст

© ООО «Страта», 2017

* * *

Предисловие

Пожалуй, разгадка тайн электромагнетизма дала нам столько, сколько мы не получали от покорения всего, что было накоплено людьми за всю их историю. Подумайте: миллионы лет и век – каких-то сто лет, в течение которых выросла и окрепла вся электротехническая промышленность Земли! Время, в течение которого люди создали себе «электрический мир». Невозможно думать об этом без восхищения. И вместе с тем еще далеко не всё мы в этой отрасли знаем…

А. Томилин. Заклятие Фавна

Человек за многие тысячелетия своей истории проделал гигантский путь познания природы, и не последнее место в окружающих его чудесах играла «янтарная субстанция» – электричество, названное так в честь янтаря – электрона по-древнегречески. Эта окаменевшая смола, привозимая из Прибалтики по Янтарному пути, по Днепру и Бугу, поражала эллинов своей способностью притягивать мелкие частички, будучи потерта тканью или шерстью. Но должны были пройти тысячелетия, прежде чем выяснилось, что мельчайшие, еле заметные искорки от натертого янтаря ничем не отличаются по своей природе от колоссальных молниевых разрядов.

Сегодня даже малообразованного суеверного человека не пугают грозовые явления – электризация воздуха, молнии, раскаты грома, – ведь ему хотя бы понаслышке известна их природная причина. Однако и сейчас в природе электрических явлений встречаются загадочные, досконально не изученные процессы, такие как шаровая молния, молния красный призрак, молния голубая струя, призрачные спрайты, суть которых мы еще не знаем и для которых только строятся полные научные модели.

Удивительна история использования солнечного вещества на Земле, а именно так можно понимать электрическую сварку и разрезание дугой из высокотемпературной плазмы электрического разряда, открытой еще в XVIII веке русским академиком Петровым. Поражает воображение спектр применения электросварочных технологий, их влияние на развитие современной науки и техники – здесь и открытие академика Корнеева, и космические технологии, и строительство подводных городов.

Столетие назад было открыто явление сверхпроводимости, указывающее прямой путь избегания потерь при передаче электроэнергии. Путь этот непрост, ведь чтобы проводник полностью потерял свое электрическое сопротивление, его необходимо охладить до очень низких температур, а это само по себе является серьезной технической задачей. Тем не менее уже десятки лет сверхпроводники удачно используют в научных приборах и медицине.

До недавнего времени высокая стоимость сверхпроводящих материалов и необходимость сверхглубокого охлаждения сильно препятствовали их массовому применению. Ситуация существенно изменилась после открытия в 1986 году высокотемпературных сверхпроводников (ВТСП). Это позволило приступить к созданию сверхпроводящих линий электропередач на основе сверхпроводников, погруженных в сравнительно дешевый жидкий азот. Уже созданы многокилометровые опытные линии, а через десятилетие прогнозируется широкое промышленное применение ВТСП-кабелей на тысячи километров линий электропередачи и сотни гигаватт передаваемой мощности.

Автор выражает глубокую признательность своим учителям и коллегам – Льву Самойловичу Палатнику, Игорю Ивановичу Фалько и Дмитрию Ивановичу Корнееву

Глава 1. Стрелы небесных громовержцев

Атмосферное электричество – грозы и земной магнетизм – едва ли не первые неразрешимые загадки природы, о которые споткнулся разум. Они долго не поддавались разгадке. Каждое время, каждая эпоха толковали наблюдаемые феномены в соответствии с накопленными знаниями. Сначала на уровне мифов, пока знаний было совсем мало. Позже, когда фактов накопилось побольше, самовластие богов перестало удовлетворять мыслителей. Они стали пытаться объяснять природу исходя из нее самой, без помощи сверхъестественных сил. Возникли первые натурфилософские догадки. Сначала наивные, чисто спекулятивного характера. Но уже и они высоко поднимали разум человека, ставили его обладателя на одну ступень с богом.

А. Томилин. Заклятие Фавна

Наводнения, землетрясения, извержения вулканов, пожары – эти стихийные бедствия сравнительно редки по сравнению с постоянными грозами. Именно поэтому с грозами связано больше всего мифов, легенд и поверий. В самом начале изустной истории человечества гроза воспринималась как ярость некоего фантастического существа, например, гигантской птицы, хлопающей громом крыльев и сверкающей молниями глаз. Затем пришла пора человекоподобных богов, и на небесах засверкали молниями Митра, Тор, Зевс, Юпитер с множеством других сверхъестественных существ. Так, у славян богом грома и молнии был Перун, как оплодотворяющее и карающее божество, приносящее весенние тепло, дождь и грозы, а после Крещения Руси роль небесного громовержца перешла к Илье-пророку.

Развитие науки привело к первым представлениям о сущности грозы. Греческие ученые Анаксимен и Анаксагор рассматривали явление грозы как результат сгущения воздуха в облаках. Сократ видел основную причину возникновения гроз в столкновении облаков, Демокрит – в их соединении. Эти представления были обобщены и развиты Аристотелем, считавшим, что молния и гром образуются благодаря воспламенению в облаках разнообразных горючих испарений и завихриванию их между облаками. В эпоху Средневековья представления о природе грозовых процессов не получили существенного развития.

Сегодня мы называем грозой процесс развития в атмосфере мощных электрических разрядов – молний, обычно сопровождаемых громом и связанных в большинстве случаев с укрупнением облаков и ливнеобразным выпадением осадков. Прохождение грозы над местностью, как правило, сопровождается довольно значительными изменениями метеорологических параметров приземного слоя воздуха. Это хорошо знакомые всем нам явления: падение температуры, повышение влажности воздуха, резкое изменение атмосферного давления, а также силы и направления ветра.

Ученые-метеорологи доказали, что грозовые процессы невозможны без разделения зарядов в облаке путем их переноса воздушными потоками – конвекции. Поле конвекции в облаках распадается на несколько своеобразных ячеек.

Каждая конвективная ячейка проходит стадию зарождения, зрелости и затухания. В стадии зарождения во всей конвективной ячейке преобладают восходящие течения. Зрелая конвективная ячейка характеризуется развитием восходящих и нисходящих потоков, электрической активностью, выраженной разрядами молний и выпадением осадков.

В последнее время исследования с помощью метеоспутников и прочих орбитальных космических аппаратов показали, что в облачной оболочке тропосферы действует своеобразный ледяной генератор. При этом подтвердилась гипотеза еще позапрошлого века о том, что электрические заряды накапливаются при соударениях кристаллов льда в виде снежинок или градин с более крупными образованиями льда в грозовых облаках. При этом мельчайшие кристаллы льда устремляются с восходящими потоками воздуха в верхнюю часть облака и многократно соударяются с другими кристаллами. При этих столкновениях мелкие кристаллы льда теряют электроны и приобретают положительный заряд. В то же время более тяжелые частицы льда обретают отрицательный заряд и опускаются в нижнюю часть облака. Таким образом создается разделение зарядов с разностью потенциалов в миллионы вольт, которая и является причиной молний. При этом каждые десять тысяч тонн облачного льда приводят к молниеносному разряду атмосферного электричества.

Большинство молний приносит к Земле отрицательный заряд, но иногда встречаются разряды и противоположной полярности. В первом случае грозы значительно богаче молниями, чем во втором. При прохождении гроз через выступы скал и остроконечные детали сооружений на земной поверхности в воздух стекает преимущественно положительный заряд. Потеря земной поверхностью положительного заряда превышает потерю отрицательного в несколько раз. В высокогорных условиях вследствие разреженности воздуха разряд с острых оконечностей значительно интенсивнее, чем в равнинной местности.

Чаще всего молния представляет собой многократный разряд. Это обычное явление, молний может насчитываться до нескольких десятков. Паузы между отдельными «залпами» составляют несколько секунд. Средняя длительность полного разряда молнии измеряется десятыми долями секунды, отклонения от среднего значения в обе стороны возможны на порядок величины. Обычно разряд развивается лавинообразно, сначала в виде ионизованного канала, получившего название лидера молнии, он ступенчато продвигается от облака к земле.

В зонах умеренного климата разряды молний направляются по преимуществу к земле, в тропиках же большинство разрядов происходит между облаками или внутри одного облака.

Разряды молний могут происходить между соседними наэлектризованными облаками или между наэлектризованным облаком и землей. Разряду предшествует возникновение значительной разности электрических потенциалов между соседними облаками или между облаком и землей вследствие разделения и накопления атмосферного электричества в результате таких природных процессов, как дождь, снегопад. Возникшая таким образом разность потенциалов может достигать миллиарда вольт, а последующий разряд накопленной электрической энергии через атмосферу создает кратковременные токи от 3 до 200 кА. Для объяснения электризации грозовых облаков был разработан ряд теорий, например модель дробления дождевых капель потоками воздуха. В результате дробления падающие более крупные капли заряжаются положительно, а остающиеся в верхней части облака более мелкие – отрицательно.

Существует также конкурирующая индукционная теория. Она строится на предположении о том, что электрические заряды разделяются электрическим полем Земли, имеющим отрицательный знак. В основе этого механизма лежит явление электростатической индукции, заключающееся в появлении противоположного заряда вблизи заряженной поверхности. Воздушные массы, насыщенные атмосферным электричеством, в целом электронейтральны, но нижняя кромка тучи получает положительный заряд, а верхняя – отрицательный. Горизонтальные молнии происходят между противоположными зарядами самого облака, а вертикальные – между его нижней частью и земной поверхностью.

В теории свободной ионизации предполагается, что электризация возникает как результат избирательного накопления ионов находящимися в атмосфере капельками разных размеров. Возможно, электризация грозовых облаков осуществляется совместным действием всех этих механизмов, а основным из них является падение достаточно крупных частиц, электризуемых трением об атмосферный воздух.

При разряде молнии на всем протяжении ее извилистого пути происходит очень быстрое нагревание столба воздуха до нескольких десятков тысяч градусов. И основной канал молнии, и все его многочисленные разветвления становятся источниками ударных волн. Резкий фронт ударной волны по мере удаления от места разряда все более сглаживается, и на некотором расстоянии от источника ударная волна превращается в акустическую (звуковую) волну небольшой амплитуды. В ходе этого превращения происходит постепенное уменьшение скорости распространения ударной волны вплоть до скорости звука в конечном итоге. Разветвленность разряда молнии между облаками обусловлена ступенчатым характером движения лидера, направление каждого шага которого определяется локальными условиями ионизации и потому носит в значительной мере случайный характер.

Средняя длина молнии обычно составляет несколько километров, но изредка между облаками могут проскакивать молнии в десятки раз длиннее. При этом разность потенциалов между грозовым облаком и Землей в верхнем пределе иногда достигает миллиарда вольт. Канал молнии определяется электрическим полем на конце движущегося лидера и локальной ионизацией. Вблизи земли его движение определяется коронным разрядом, возникающим над заостренными проводящими предметами, выступающими над поверхностью земли. Молния с большой вероятностью повторно ударяет в туже самую точку, если только объект не разрушен предыдущим ударом.

Звуки, следующие после главного удара грома, создают впечатление удаляющегося от места наблюдения и постепенно затухающего рокочущего шума, это – раскаты грома. Они наблюдаются в местности с любым рельефом и образуются ветвящимся и удаляющимся от места наблюдения разрядом молнии. Длительность раскатов грома определяется особенностями развития молнии. В среднем раскаты длятся половину минуты, а крайние отклонения от среднего значения составляют около 50 %. Характер звучания грома является существенной особенностью уже начавшейся грозы. Народные приметы говорят, что длительные раскаты грома являются признаком приближения протяженного массива грозовых облаков. Глухой, продолжительный и умножающийся со временем гром с медленными раскатами характерен для длительной грозы, в то время как короткие и резкие удары с возрастающими по времени промежутками между ними характеризуют кратковременную.

В грозу нельзя прятаться под деревом. Следует отойти на расстояние, в два раза превышающее его высоту. Попадая в землю, молния «растекается», и ее импульсный ток создает разность потенциалов на поверхности, так называемое шаговое напряжение. Напряжение тем меньше, чем дальше от места удара. А воздействие на человека тем меньше, чем у́же стоят его ноги.


Средняя дальность слышимости грома для летних гроз на континенте составляет полтора десятка километров. Разница во времени между вспышками молнии и восприятием грома может достигать полутора минут. Гром от близкого разряда производит такое же действие на слух, как выстрел зенитного орудия в нескольких метрах от наблюдателя.

Площадь земной поверхности, на которой проявляются связанные с отдельной грозой электрические явления, простирается на десятки квадратных километров. Благодаря проводимости воздуха к земной поверхности на этой площади от облака поступает ток силой около ампера.

Учитывая, что на Земле ежесекундно наблюдается в среднем около 100 разрядов линейной молнии, можно подсчитать среднюю мощность, которая затрачивается в масштабе всей Земли на образование гроз; она равняется 1018 эрг/с. В связи с этим следует отметить, что энергия конденсации, выделяющаяся в грозовом облаке средних размеров с площадью основания около 30 км2 при дожде средней интенсивности, составляет около 1021 эрг. Таким образом, энергия, выделяющаяся при выпадении осадков из грозового облака, значительно превышает его электрическую энергию.

С давних времен в процессе познания грозы человек стремился подчинить ее своей власти. Об этом говорит, например, легенда о Прометее. Овладение грозами было предметом мечтаний ученых и философов Средневековья. В последние годы были сделаны попытки засева грозовых облаков кристаллами йодистого серебра, йодистого свинца и твердой углекислоты. Предполагается, что каждое из этих веществ может способствовать затуханию и даже полному прекращению грозового процесса за счет резкого усиления конденсации водяного пара. Опыты в этом направлении уже позволили накопить обширный экспериментальный материал, позволяющий сделать ряд практических выводов. На их основе были разработаны методики, позволяющие эффективно бороться с локальными очагами непогоды при главных праздничных, спортивных, музыкальных и политических мероприятиях на открытом воздухе.


Солнечные панели космической станции содержат в общей сложности 262 400 солнечных батарей и занимают площадь около 2 500 м2 – более половины площади футбольного поля.


Другой вариант основан на вычислении точной структуры и силы подогрева атмосферы, необходимого для снижения интенсивности урагана и изменения его курса. Несомненно, практическая реализация такого проекта потребует огромного количества энергии, но ее можно получить с помощью орбитальных солнечных электростанций.

Вырабатывающие энергию спутники следует оснастить гигантскими зеркалами, фокусирующими солнечное излучение на элементах солнечной батареи. Собранную энергию затем можно будет переправить на земные микроволновые приемники. Современные конструкции космических солнечных станций способны распространять микроволны, не нагревающие атмосферу и поэтому не теряющие энергию. Для управления погодой важно направить из космоса микроволны тех частот, при которых они лучше поглощаются водяным паром. Различные слои атмосферы можно нагреть согласно заранее продуманному плану, а области внутри урагана и ниже дождевых облаков будут защищены от нагрева, так как дождевые капли хорошо поглощают СВЧ-излучение.

Есть замечательный роман Даниила Гранина «Иду на грозу». В нем рассказывается о самоотверженных исследованиях молодых ученых, проводящих опасную авиаразведку бушующих гроз с борта плохо приспособленного транспортного самолета с целью найти критические параметры для управления погодой. В романе подобные попытки заканчиваются трагически, но сама идея воздействия на грозовые процессы непосредственно с борта летательного аппарата, находящегося в центре (глазе урагана), была очень популярна во второй половине прошлого века. К сожалению, практического воплощения «генератор» погодных условий не получил и до сих пор еще не построен.

Кроме проблемы управления погодными условиями существует не менее увлекательная задача получения энергии грозового электричества. В тридцатых годах прошлого века на одной из горных вершин Швейцарских Альп была установлена металлическая решетка. Во время гроз эта решетка собирала достаточный заряд для возникновения многометровых электрических разрядов, что соответствовало силе тока в несколько десятков тысяч ампер и миллионновольтной разности потенциалов.

Вначале предполагалось получаемое на этой установке напряжение использовать для ускорения заряженных частиц в ускорителях. Однако от этой мысли пришлось отказаться ввиду сильной изменчивости электрического состояния грозовых облаков и невозможности его достаточной стабилизации. Попытки использовать протекающий во время гроз в поднятых высоко над земной поверхностью антеннах электрический ток для питания ламп накаливания также пока не дали экономически выгодного эффекта.

Каждую минуту на Земле происходит около 6000 ударов молний между облаками и земной поверхностью, естественно, что это совершенно фантастическое количество электроэнергии, расходуемое «впустую» планетными грозами, давно не дает покоя поколениям изобретателей. В научно-популярных изданиях можно найти самые разнообразные проекты различных вертикальных электролиний – громоотводов, прикрепленных к аккумуляторам и поддерживаемых дирижаблями, гелиостатами (воздушными шарами, нагреваемыми солнцем) и даже геостационарными (висящими над определенной точкой земной поверхности) спутниками. Вполне вероятно, что приближающийся глобальный топливно-энергетический кризис заставит научный мир пересмотреть отношение к подобным идеям, перейдя к детальному анализу наиболее перспективных из них.

Между прочим, один из удивительных феноменов проявления атмосферного электричества уже многие столетия служит мореходству, получив название Маяк Маракайбо.

Глава 2. Молниевый шторм в Кататумбо

С незапамятных времен грозные и таинственные явления природы волновали людей, интересовали их и требовали объяснения. Почему, к примеру, время от времени небо затягивают черные тучи, блещут молнии и гремит гром? Почему огненные стрелы поражают некоторых людей, даже если они спрятались под высокими деревьями, и не трогают других в чистом поле? Нет ли в этом какого-нибудь тайного смысла, не участвуют ли в этом выборе неведомые силы?

А. Томилин. Заклятие Фавна

Как-то раз знаменитый британский пират «на службе короны», то есть имевший патент на официальный грабеж испанских колоний, Френсис Дрейк, задумал взять штурмом город Кататумбо. Этот некогда богатый испанский форпост расположен на северо-западе Венесуэлы, там, где река Кататумбо впадает в озеро Маракайбо. Весной 1595 года под покровом темноты отряды Дрейка подошли к стенам Кататумбо, и тут череда мощных беззвучных молний озарила все окрестности. Испанцы тут же подняли тревогу, и их пушки быстро обратили пиратов в бегство.

Это знаковое событие, предвосхитившее закат карибской пиратской вольницы, нашло свое отражение в эпической поэме Лопе де Вега «Песнь о драконе», написанной в 1597 году. В ней великий испанский драматург, поэт и писатель красочно изобразил гибель ненавистного адмирала-флибустьера.

Так весь мир узнал о прекрасном в своей загадочности природном явлении, которое получило название «молнии Кататумбо».

Феномен Кататумбо исследовал знаменитый прусский естествоиспытатель Александр фон Гумбольдт, пришедший к выводу, что молниевые штормы в небесах вызывают своеобразные «электрические взрывы». Наблюдения Гумбольдта дополнил известный итальянский географ Агустин Кодацци, много писавший об «удивительной череде молний высоко в небесах, которые возникают без грозовой канонады над болотами Зулиа» (Зулиа – это штат Венесуэлы, где располагается озеро Маракайбо и река Кататумбо).

Сегодня мы знаем, что непрекращающийся шторм Кататумбо выражается в возникновении множества последовательных молниевых вспышек. Порывы этого небесного шторма возникают в основном ночью и сильно зависят от времени года, достигая пика интенсивности в мае и октябре. Интенсивность ударов молний здесь одна из самых высоких на Земном шаре и достигает 250 разрядов на квадратный километр в год. При этом количество грозовых дней в году меняется от семидесяти до двухсот. В суточном пике активности, который приходится на время от семи часов вечера до четырех утра, можно увидеть до трех десятков вспышек в минуту. В час молнии вспыхивают до трех сотен раз.


Молнии видны с расстояния до 400 км, не только в дни штормов, но и в обычные. Из-за такой постоянной грозовой активности молниевый шторм называют Маяком Маракайбо, ведь на протяжении столетий яркие сполохи помогали судам ориентироваться в болотистой дельте Кататумбо.


Грозовые тучи над Кататумбо порождают более миллиона молний в год, мощность каждой из которых составляет порядка 400000 А. Непрерывно сменяя друг друга, небо рассекают колоссальные электрические разряды до десяти и более километров длиной. Самое интересное, что при такой интенсивности молний практически не слышно грозовых раскатов.

Считается, что молнии Кататумбо являются крупнейшим одиночным генератором озона на Земле. Впадающая в озеро Маракайбо река Кататумбо проходит через очень большие болота, вымывая органические материалы, которые, разлагаясь, выделяют огромные облака ионизированного метана. Потом они поднимаются на большие высоты, где разносятся сильными ветрами, прибывающими из Анд. Метан, ослабляя изоляционные свойства воздуха в облаке, вызывает частое появление молний.

Существуют и другие версии возникновения молниевого шторма над Маракайбо, но в январе 2010 года метановая гипотеза получила существенное подтверждение. После многомесячной засухи многие болота пересохли, и выбросы метана резко снизились. Вскоре Маяк Маракайбо погас. Небесные сполохи исчезли на долгие три месяца, так что экологи, метеорологи и туристы забили тревогу задаваясь вопросом, почему прекратился удивительный феномен. К счастью, после обильного сезона дождей, восстановившего водный баланс болот, генератор молний заработал вновь и с небольшими перерывами продолжает сверкать до сих пор.

Обычно молнии «включаются» примерно через час после заката. К этому моменту небольшие кораблики с туристами уже качаются на волнах озера. Берег чуть виден, и его огни не мешают наслаждаться удивительной и завораживающей картиной бесконечной пляски желто-оранжевых всполохов. При этом старожилы не рекомендуют искать встречи с молниями в период с января по март.

Недавно НАСА представило серию снимков молниевых штормов, сделанных с высоты нескольких сотен километров метеоспутником GOES-16. Этот геостационарный спутник наблюдения за окружающей средой был запущен на орбиту высотой в 35,8 тысячи км и с тех пор висит над Западным полушарием, анализируя погоду и передавая данные на Землю.

Этому новейшему американскому погодному спутнику и удалось запечатлеть поразительный мощный электрический шторм, который разразился над северо-западом Венесуэлы. Кроме всего прочего, GOES-16 зафиксировал редкую особенность молниевого шторма, когда разряды бьют исключительно из тучи в тучу параллельно земной поверхности.

На гербе и флаге штата Зулиа в честь феномена Кататумбо изображен стилизованный Маяк Маракайбо. При этом власти штата при поддержке центрального правительства на протяжении многих лет ставят вопрос о включении этого удивительного природного явления в перечень памятников всемирного наследия ЮНЕСКО. Если молнии Кататумбо когда-нибудь попадут в этот список, это, несомненно, будет беспрецедентным решением мирового сообщества.

26 423,57 s`om
Yosh cheklamasi:
12+
Litresda chiqarilgan sana:
29 may 2020
Yozilgan sana:
2017
Hajm:
203 Sahifa 23 illyustratsiayalar
ISBN:
978-5-9500888-0-3
Mualliflik huquqi egasi:
Страта
Yuklab olish formati:
Matn
O'rtacha reyting 4, 3 ta baholash asosida
Matn
O'rtacha reyting 5, 2 ta baholash asosida
Matn
O'rtacha reyting 5, 2 ta baholash asosida