bepul

Automobile Biographies

Matn
0
Izohlar
iOSAndroidWindows Phone
Ilova havolasini qayerga yuborishim mumkin?
Mobil qurilmada kodni kiritmaguningizcha oynani yopmang
TakrorlashHavola yuborildi

Mualliflik huquqi egasi talabiga ko`ra bu kitob fayl tarzida yuborilishi mumkin emas .

Biroq, uni mobil ilovalarimizda (hatto internetga ulanmasdan ham) va litr veb-saytida onlayn o‘qishingiz mumkin.

O`qilgan deb belgilash
Shrift:Aa dan kamroqАа dan ortiq
John Baynes

A very ingenious modification of William Brunton’s mechanical traveler, was the subject of a patent granted to John Baynes, a cutler, of Sheffield, England, in September, 1819. The mechanism was designed to be attached to carriages for the purpose of giving them motion by means of manual labor, or by other suitable power, and consisted of a peculiar combination of levers and rods. The patentee also stated that there might be several sets of the machinery above described for working each set with a treadle, or even only one set and treadle. Then he added: “I prefer two for ordinary purposes, particularly when only a single person is intended to be conveyed in the carriage, who may work the same by placing one foot on each treadle, in which the action will be alternate. The lower parts of the leg should be so formed or shod as not to slip upon the ground. This machinery may be variously applied to carriages, according to circumstances, so as that the treadles may be worked either behind or before the carriage, still producing a forward motion; in some cases it may be advantageous to joint the front end of the treadles to the carriage and press the feet on the hind ends.”

Julius Griffiths

Among those who came to the front with plans for steam carriages for the public highways, soon after the roads began to be improved, was Julius Griffiths, of Brompton Crescent. In 1821, he patented a steam carriage that was built by Joseph Bramhah, a celebrated engineer and manufacturer. It is said that part of the mechanism was designed by Arzberger, a foreigner.

The carriage has been termed by some English authorities “the first steam coach constructed in this country, expressly for the conveyance of passengers on common roads.” It was repeatedly tested during a period of three or four years, but failed on account of boiler deficiencies. Alexander Gordon said of it: “The engines, pumps, and connections were all in the best style of mechanical execution, and had Mr. Griffiths’ boiler been of such a kind as to generate regularly the required quantity of steam, a perfect steam carriage must have been the consequence.” The carriage moved easily and answered very readily to guidance. The vehicle was a double coach and could carry eight passengers.

This locomotive had two vertical working steam cylinders, which with the boiler, condenser, and other details were suspended to a wood frame at the rear of the carriage. The engineer was seated behind and did his own firing. The boiler was a series of horizontal water tubes, one and one-half inches in diameter and two feet long; at each end the flanges were bolted to the vertical tubes forming the sides of the furnace. Attached to the wood frame in front of the driving wheels, was a small water tank, and a force pump supplied the boiler with water. The steam, passing through the cylinder, went into an air condenser. The power of the engines was communicated from the piston rods to the driving wheels of the carriage by sweep rods, the lower ends of which were provided with driving pinions and detents, which operated upon toothed gear fixed to the hind carriage axle. The object of this mechanism was to keep the driving pinions always in gear with the toothed wheels, however the engine and other machinery might vibrate or the wheels be jolted upon uneven ground. The boiler, engine, and other working parts were suspended to the wood frame by chain slings, having strong spiral springs so as to reduce the vibration from rough roads.

Edmund Cartwright

Born at Marnham, Nottinghamshire, England, April 24, 1743. Died at Hastings, October 30, 1823.

Cartwright was educated at Oxford and secured a living in the English church. He devoted himself to the ministry and to literature until 1784, when he became interested in machinery and in the following year invented the power loom. He took out other patents and also gave some attention to devising a mechanical carriage propelled by man power. In 1822, he made a vehicle that was moved by a pair of treadles and cranks worked by the driver.

Even the steam engine engaged his attention. Some improvements which he proposed in it are recorded in works on mechanics. While residing at Eltham, in Lincolnshire, he used frequently to tell his son that, if he lived to be a man, he would see both ships and land-carriages impelled by steam. At that early period he constructed a model of a steam engine attached to a barge, which he explained, about the year 1793, to Robert Fulton. It appears that even in his old age, only a year before his death, he was actively engaged in endeavoring to contrive a plan of propelling land-carriages by steam.

T. Burtsall

An engineer, of Edinburgh, Scotland, T. Burtsall, in conjunction with J. Hill, of London, got out, in 1824, a patent for flash or instantaneous generation boilers. His aim was to make the metal of the boiler store heat instead of a mass of water, and he accomplished this by heating the boiler to anywhere from two hundred and fifty degrees to six hundred degrees Fahrenheit, keeping the water in a separate vessel and pumping it into the boiler as steam was required. A coach that he built to run with this boiler weighed eight tons, and it was a failure, simply because the boiler could not make steam fast enough.

T. W. Parker

A working model of a light steam carriage was made by T. W. Parker, of Illinois, in 1825. Three wheels supported the carriage, the two hind wheels being eight feet in diameter. The double-cylinder engine was used.

George Pocock

One of the most curious of the wind vehicle productions that held the fancy of scientists to a slight extent in the early part of the nineteenth century was the charvolant or kite carriage that was devised by George Pocock in 1826, and built by Pocock and his partner, Colonel Viney. This was a very light one-seated carriage, drawn by a string of kites harnessed tandem. With a good wind these kites developed great power and it is said that the carriage whirled along, even on heavy roads, at the rate of a mile in three or even two and one-half minutes. Once Viney and Pocock made the trip from Bristol to London, and they often ran their carriage around Hyde Park and the suburbs of London. As the wind could not always be depended upon the charvolant was provided with a rear platform, upon which a pony was carried for emergencies.

Samuel Brown

In 1826, Samuel Brown applied his gas-vacuum engine to the propulsion of a carriage, which was effectively worked along the public roads in England. It even ascended the very steep acclivity of Shooter’s Hill, in Kent, to the astonishment of numerous spectators. The expense of working this machine was, however, said far to exceed that of steam, and this formed a barrier to its introduction. Experiments with this engine for the propulsion of vessels on canals or rivers were also made by the Canal Gas Engine Company. Brown patented a locomotive for common roads in 1823.

James Neville

In January, 1827, James Neville, an engineer of London, took out a patent for a “new-invented improved carriage,” to be worked by steam, the chief object of which appears to have been to provide wheels adapted to take a firm hold of the ground. He proposed to make each of the spokes of the wheels by means of two rods of iron, coming nearly together at the nave, but diverging considerably apart to their other ends, where they were fastened to an iron felly-ring of the breadth of the tire, and this tire was to be so provided with numerous pointed studs about half an inch long as to stick into the ground to prevent the wheel from slipping round. A second method of preventing this effect was to fasten upon the tire a series of flat springing plates, each of them forming a tangent to the circumference, so that as the wheels rolled forward each plate should be bent against the tire and recover its tangential position as it left the ground in its revolution. It was considered that the increased bearing surface of the plate, and the resistance of its farthest edge, would infallibly prevent slipping. For propelling the carriage Neville proposed to use a horizontal vibrating cylinder to give motion direct to the crank axis by means of the compound motion of the piston rod, as invented by Trevithick, the motion to the running wheels to be communicated through gear of different velocities.

T. S. Holland

Among the singular propositions for producing a locomotive action that were brought out early in the eighteenth century was that invented by T. S. Holland, of London, for which he took out a patent in December, 1827. The invention consisted in the application of an arrangement of levers, similar to that commonly known by the name of lazy-tongs, for the purpose of propelling carriages. The objects appeared to be to derive from the reciprocating motion of a short lever a considerable degree of speed, and to obtain an abutment against which the propellers should act horizontally, in the direction of the motion of the carriage, instead of obliquely to that motion, as is the case when carriages are impelled by levers striking the earth.

James Nasmyth

Born in Edinburgh, Scotland, August 19, 1808. Died in South Kensington, England, May 6, 1890.

While yet in his teens James Nasmyth showed great mechanical ability and constructed a small steam engine. In 1821, he became a student at the Edinburgh School of Arts. Six years later he had made a very substantial advance in his experiments. The story of what he endeavored to accomplish is best told by himself. In later life he wrote:

“About the year 1827, when I was nineteen years old, the subject of steam carriages to run upon common roads occupied considerable attention. Several engineers and mechanical schemers had tried their hands, but as yet no substantial results had come of their attempts to solve the problem. Like others, I tried my hand. Having made a small working model of a steam carriage, I exhibited it before the members of the Scottish Society of Arts. The performance of this active little machine was so gratifying to the Society, that they requested me to construct one of such power as to enable four or six persons to be conveyed along the ordinary roads. The members of the Society, in their individual capacity, subscribed three hundred dollars, which they placed in my hands as the means for carrying out their project. I accordingly set to work at once, and completed the carriage in about four months, when it was exhibited before the members of the Society of Arts. Many successful trials were made with it on the Queensferry Road, near Edinburgh. The runs were generally of four or five miles, with a load of eight passengers sitting on benches about three feet from the ground. The experiments were continued for nearly three months, to the great satisfaction of the members.

 

“I may mention that in my steam carriage I employed the waste steam to create a blast or draught, by discharging it into the short chimney of the boiler at its lowest part; and I found it most effective. I was not at that time aware that George Stephenson and others had adopted the same method; but it was afterwards gratifying to me to find that I had been correct as regards the important uses of the steam blast in the chimney. In fact, it is to this use of the waste steam that we owe the practical success of the locomotive engine as a tractive power on railways, especially at high speeds.

“The Society of Arts did not attach any commercial value to my road carriage. It was merely as a matter of experiment that they had invited me to construct it. When it proved successful they made me a present of the entire apparatus. As I was anxious to get on with my studies, and to prepare for the work of practical engineering, I proceeded no further. I broke up the steam carriage, and sold the two small high-pressure engines, provided with a strong boiler, for three hundred and thirty-five dollars, a sum which more than defrayed all the expenses of the construction and working of the machine.”

F. Andrews

It is said that F. Andrews, of Stamford Rivers, Essex, England, was the inventor of the pilot steering wheel which was used by Gurney and has been often used since then. He also made other improvements in steam carriages in 1826. One of his patents was for the oscillating cylinders that were used by James Neville in his steam carriage. Andrews’ steam carriage was a failure, like many others of that period, on account of imperfect working of the boiler.

Harland

Dr. Harland, of Scarborough, in 1827 invented and patented a steam carriage for running on common roads. A working model of the steam coach was perfected, embracing a multi-tubular boiler for quickly raising high-pressure steam, with a revolving surface condenser for reducing the steam to water again by means of its exposure to the cold draught of the atmosphere through the interstices of extremely thin laminations of copper plates. The entire machinery placed under the bottom of the carriage, was borne on springs; the whole being of an elegant form.

This model steam carriage ascended with ease the steepest roads. Its success was so complete that Harland designed a full-sized carriage; but the demands upon his professional skill were so great that he was prevented going further than constructing a pair of engines, the wheels, and a part of the boiler. Harland spent his leisure time in inventions and in that work was associated with Sir George Cayley. He was Mayor of Scarborough three times. He died in 1866.

Pecqueur

Chief of shops at the Conservatoire des Arts et Metier, Paris, Pecqueur made a steam wagon in 1828. His vehicle had two drive wheels keyed to two pairs of axles. His planet gearing was the origin of the balance gear.

James Viney

Colonel James Viney, Royal Engineers, in 1829 patented a boiler intended for steam carriages. His plan was to have two, three, four, or six concentric hollow cylinders containing water, between which the fire from below passed up. An annular space for water, and an annular space or flue for the ascending fire, were placed alternately, the water being between two fires.

Chevalier Bordino

An Italian officer of engineers, Bordino devised and constructed a steam carriage for the diversion of his little daughter. It was a carriage à la Dumont, and for forty years was used regularly in the carnival festivities of Turin in the early part of the nineteenth century. It is still preserved as donated by the widow of Bordino to the Industrial Museum of Turin.

Clive

Best known as a writer of articles on the steam carriage, over the signature of Saxula, in the Mechanic’s Magazine, Clive, of Cecil House, Staffordshire, England, also engaged in experimenting with steam. In 1830, he secured patents for two improvements in locomotives, one increasing the diameter of the wheels and the other increasing the throw of the cranks. After a time he seems to have lost faith in the steam carriage, for in 1843 he wrote: “I am an old common road steam carriage projector, but gave it up as impracticable ten years ago, and I am a warm admirer of Colonel Maceroni’s inventions. My opinion for years has been, and often so expressed, that it is impossible to build an engine sufficiently strong to run even without a load on a common road, year by year, at the rate of fifteen to twenty miles an hour. It would break down. Cold iron at that speed cannot stand the shock of the momentum of a constant fall from stones and ruts of even an inch high.”

Summers and Ogle

Two steam carriages built by Summers and Ogle, in 1831, were among the most successful vehicles of their kind in that day. One of these carriages had two steam cylinders, each seven and one-half inches in diameter and with eighteen-inch stroke. It was mounted on three wheels and its boiler would work at a pressure of two hundred and fifty pounds per square inch. Passengers were carried in the front and the middle of the coach, while the tank and the boiler were behind. The second carriage had three steam cylinders, each four inches in diameter, with a twelve-inch stroke. When the committee of the House of Commons was investigating the subject of steam locomotion on the common roads Summers and Ogle appeared and gave interesting particulars concerning their vehicles. The greatest velocity ever obtained was thirty-two miles an hour. They went from the turnpike gate at Southampton to the four-mile stone on the London road, a continued elevation, with one slight descent, at the rate of twenty-four and a half miles per hour, loaded with people; twenty passengers were often carried. Their first steam carriage ran from Cable Street, Wellclose Square, to within two miles and a half of Basingstoke, when the crank shaft broke, and they were obliged to put the whole machine into a barge on the canal and send it back to London. This same machine had previously run in various directions about the streets and outskirts of London. With their improved carriage they went from Southampton to Birmingham, Liverpool and London, with the greatest success.

The Saturday Magazine, of October 6, 1832, gave an account of one of their trials as follows: “I have just returned from witnessing the triumph of science in mechanics, by traveling along a hilly and crooked road from Oxford to Birmingham in a steam carriage. This truly wonderful machine is the invention of Captain Ogle, of the Royal Navy, and Mr. Summers, his partner, and is the first and only one that has accomplished so long a journey over chance roads, and without rails. Its rate of traveling may be called twelve miles an hour, but twenty or perhaps thirty down hill if not checked by the brake, a contrivance which places the whole of the machinery under complete control. Away went the splendid vehicle through that beauteous city (Oxford) at the rate of ten miles an hour, which, when clear of the houses, was accelerated to fourteen. Just as the steam carriage was entering the town of Birmingham, the supply of coke being exhausted, the steam dropped; and the good people, on learning the cause, flew to the frame, and dragged it into the inn yard.”

Gibbs

An English engineer, Gibbs made a special study of the steam carriage of Sir Charles Dance in 1831. As a result of his investigations he built a steam drag in 1832. This was intended to draw passenger carriages and it had a boiler with spirally descending flue placed behind the driving wheels. In 1832, in conjunction with his partner, Applegate, he patented a steam carriage with a tubular boiler and oscillating engine cylinders. The power from the axle was transmitted to the driving wheels through friction bands, arranged in the bases of the wheels so that one or both wheels could be coupled to the axles.

Charles Dance

An enthusiastic motorist, Sir Charles Dance, of London, in the first third of the ninteenth century did a great deal to encourage the engineers who were inventing steam road vehicles. He was financially interested in several of the companies that were organized to run steam coaches over the common roads. He was the backer of Goldsworthy Gurney, and was also engaged in building for himself. His most famous car was a coach that ran every day from the Strand, London, to Brighton. This was an engine mounted on four wheels with a tall rectangular funnel that narrowed toward the top. Above the engine were seats for six or seven persons besides the driver. Behind the engine was a vehicle like a boxcar low hung on wheels. On the side of this box was emblazoned the coat of arms of its owner. On the roof seat in front were places for four passengers. On a big foot-board behind, stood the footman. This carriage was one of the spectacular sights of London at that time and great crowds gathered in the Strand every day to witness its departure.

Dance ran Gurney’s coaches on the Cheltenham and Gloucester Road until public opposition compelled his withdrawal, but after that he was a joint patentee with Joshua Field, of an improved boiler. This was applied to the road carriage above mentioned and the first trips were made in September, 1833, with a drag and omnibus attached, a speed of sixteen miles an hour being attained. On the first trip from London to Brighton, fifteen passengers were carried and the distance of fifty-two miles was covered in five and a half hours, the return journey being performed in less than five hours. About the middle of October the steam drag and omnibus were put upon the road between Wellington Street, Waterloo Bridge, and Greenwich, where it continued to run for a fortnight, with a view of showing the public in London what could be done in this direction. The proprietor had no intention of making it a permanent mode of conveyance, and therefore kept the company as select as he could by charging half a crown for tickets each way.

Joshua Field

Born in 1786. Died in 1863.

A member of the well-known firm of Maudsley, Sons & Field, marine engineers, of London, England, Joshua Field took out a patent for an improved boiler, in conjunction with Sir Charles Dance. The firm made an improved vehicle for Dance, and in 1835 Field constructed for himself a steam carriage that made a trip in July with a party of guests. The carriage was driven up Denmark Hill, and did the distance, nine miles, in forty-four minutes. It also ran several times to Reading and back, at the rate of twelve miles an hour. One of the subscribers towards the building of this carriage, said that it was a success mechanically, but not economical. Field was one of the six founders of the Institution of Civil Engineers.

Dietz

Previous to the time that the carriage of Francis Maceroni was taken to France, an engine designed by Dietz was run in the streets of Paris. In the reports of the Academy of Sciences and Academy of Industry in Paris, in 1840, this vehicle was described. The carriage had eight wheels, two of which were large and gave the impulsion. The six smaller wheels rose and fell according to the irregularity of the road, and at the same time assisted in bearing the weight of the carriages. The wheels were bound with wood tires, having cork underneath. The locomotive was a drag, drawing a carriage for passengers. The engine was of thirty horse-power, and a speed of ten miles an hour was made.

 
Yates

A steam carriage was built by Messrs. Yates & Smith, London, in 1834. It had a trial in July of that year, running from the factory in Whitechapel, along High and several other streets, at the rate of ten to twelve miles an hour. Vibrating engines, working on horizontal framing, were used. The coach resembled an ordinary stage-coach.

G. Millichap

In a letter to an English engineering paper in 1837, G. Millichap, of Birmingham, claimed to have a locomotive carriage building. He wrote: “If your correspondent will take the trouble to call at my house I shall be happy to show him a locomotive carriage in a state of great forwardness, intended decidedly for common roads.”

James Caleb Anderson

Born in Cork, Ireland, July 21, 1782. Died in London, April 4, 1861.

The father of Sir James Caleb Anderson, of Buttevant Castle, Ireland, was John Anderson, a celebrated merchant of Ireland, famous as the founder of the town of Fermoy. The son gave much attention to the subject of steam and steam propulsion, and made many experiments, taking out several patents. In 1831, he lodged a specification for improvements in machinery for propelling vessels on water; in 1837, for improvements in locomotive engines, and in 1846, for improvements in obtaining motive power and applying it to the propulsion of cars and vessels and the driving of machinery. His 1831 patent was for a manually-propelled vehicle, a carriage in which twenty-four men were arranged on seats, like rowers in a boat, but in two tiers, one above the other. The action was nearly the same as the pulling of oars, the only difference being that all the men sitting on one seat pulled at one horizontal cross-bar, each extremity of which was furnished with an anti-friction roller that ran between guide rails on the opposite sides of the carriage. The ends of each of these horizontal bars were connected to reciprocating rods that gave motion to a crank shaft, on which were mounted spur gear that actuated similar gear on the axis of the running wheels of the carriage; so that by sliding the gear on the axis of the latter any required velocity could be communicated to the carriage, or a sudden stop made. It was proposed to employ this as a drag, to draw one or more carriages containing passengers after it. The patentee had chiefly in view the movement of troops by this method.

Anderson gave financial support to W. H. James, in 1827, until he fell into pecuniary difficulties. Ten years later he re-engaged in steam carriage construction on his own account, and according to his own reports he expended over one hundred and fifty thousand dollars on experiments. It was said that he failed in twenty-nine carriages before he succeeded in the last. He patented a boiler that was said to be a poor copy of Walter Hancock’s boiler. Then he organized a joint-stock company, the Steam Carriage and Wagon Company, which proposed to construct steam drags in Dublin and in Manchester, which, when completed, were to convey goods and passengers at double the speed and at half the cost of horse carriages.

Anderson said: “I produce and prove my steam drags before I am paid for them, and I keep them in repair; consequently, neither the public nor the company runs any risk. The first steam carriage built for the company is nearly completed. It will speak for itself.” In the Mechanic’s Magazine, June, 1839, a Dublin correspondent writes: “I was fortunate enough to get a sight of Sir James Anderson’s steam carriage, with which I was much pleased. It had just arrived from the country, and was destined for London in about three weeks. The engine weighs ten tons, and will, I dare say, act very well. I shall have an opportunity of judging that, as the tender is at Cork. It has a sort of diligence, not joined, but to be attached to the tender, making in all three carriages. I talked a great deal about it to one of his principal men, who was most lavish in its praises, especially as regards the boiler.” In August, 1839, the carriage arrived in London.

In 1840, a report said: “Several steam carriages are being built at Manchester and Dublin, under Sir James Anderson’s patents, and one has been completed at each place. At Manchester the steam drag had been frequently running between Cross Street and Altrincham, and the last run was made at the rate of twenty miles an hour, with four tons on the tender, in the presence of Mr. Sharp, of the firm of Sharp, Roberts and Company, of Manchester, and others.” A newspaper of the same year reported that an experimental trip of Anderson’s steam drag for common roads took place on the Howth Road, Dublin. It ran about two hours, backing, and turning about in every direction—the object being chiefly to try the various parts in detail. It repeatedly turned the corners of the avenues at a speed of twelve miles an hour, the steam pressure required being only forty-six pounds per square inch. No smoke was seen, and little steam was observed. The whole machinery was ornamentally boxed in, so that none of the moving parts was exposed to view, and it was found that the horses did not shy at this carriage.

The company had great plans for travel communication by means of these drags between the chief towns in Ireland, as soon as a few of the steam carriages were finished. An even more pretentious scheme involved a service in conjunction with the railway trains from London, carriages to be run from Birmingham to Holyhead, whence passengers were to be conveyed to Dublin by steamer; from Dublin to Galway the steam drags were to be employed; and thence to New York per vessel touching at Halifax; thus making Ireland the stepping-stone between England, Nova Scotia, and the United States of America. But all these plans came to naught.

Anderson continued to take out patents down to as late as 1858. He devoted more than thirty years of his life to the promotion of steam locomotion on common roads.

Robert Davidson

Robert Davidson, of Aberdeen, was probably the first to make an electrically propelled carriage large enough to carry passengers. This he did in 1839. His carriage could carry two persons when traveling over a fairly rough road, and though the prospects were enticing enough to cause investment in the enterprise, Davidson’s subsequent work was on rail vehicles.

W. G. Heaton

W. G. and R. Heaton, of Birmingham, England, built several steam carriages which operated with various degrees of success in their neighborhood. Their patent was dated in October, 1830. The patent aimed particularly at the guidance of a locomotive carriage, and the management of the steam apparatus so that the power and speed might be accommodated to the nature of the road, the quantity of the load, and so on.

For the purpose of steering the carriage, a vertical spindle was placed at some distance before the axle of the front wheels and on its lower end a small drum was fixed. Around this drum was coiled a chain with its middle fixed upon the drum, and its ends made secure to the front axle formed a triangle with the drum, situated at the angle opposite the longest side. The other end of the vertical spindle was connected with a frame situated in front of the coachman’s or rather the steersman’s seat and here on the spindle was a horizontal beveled-toothed wheel. Over this wheel an axis extended, terminating in two crank handles proceeding from the axes in different directions, so that one was down when the other was up. Upon this axis was fixed another beveled-toothed wheel taking into the first. When these wheels were turned in one direction the right-hand fore wheel of the carriage advanced and the coach turned towards the left, while when they were turned in the other direction the left-hand wheel advanced and the carriage turned towards the right.