«Большие данные. Революция, которая изменит то, как мы живем, работаем и мыслим» kitobidan iqtiboslar
Иногда два плюс два может равняться 3,9. И это достаточно хорошо.
Новые профессионалы должны быть специалистами в области компьютерных наук, математики и статистики. Выступали бы они в качестве инстанций, контролирующих анализ и прогнозы больших данных. Алгоритмисты давали бы клятву в беспристрастности и конфиденциальности, как это делают бухгалтеры и другие специалисты в наше время. Они могли бы оценивать выбор источников данных, аналитических средств и средств прогнозирования (в том числе алгоритмов и моделей), а также интерпретацию результатов. В случае возникновения спора алгоритмисты получали бы доступ к соответствующим алгоритмам, статистическим подходам и наборам данных, которые подготовили данное решение.
Джон Андертон, начальник специального полицейского подразделения в Вашингтоне, округ Колумбия, одним прекрасным утром врывается в пригородный дом за считаные секунды до того, как разъяренный Говард Маркс вот-вот вонзит ножницы в тело своей жены, которую он застал в постели с любовником. Для Андертона это всего лишь очередной день профилактики тяжких преступлений. «Как представитель отдела по профилактике преступлений округа Колумбия, – произносит он, – заявляю: вы арестованы по обвинению в будущем убийстве Сары Маркс, которое должно было произойти сегодня…»
Полицейские связывают Маркса, который кричит: «Я ничего не сделал!» Начальный эпизод фильма «Особое мнение» изображает общество, в котором предсказания выглядят настолько точными, что полиция арестовывает частных лиц за еще не совершенные преступления. Людей сажают в тюрьму не за фактические действия, а за предсказанные, даже если на самом деле преступлений не произошло. Причиной тому является не анализ данных, а видения трех ясновидящих. Мрачное будущее, изображенное в фильме, показывает именно то, к каким угрозам может привести неконтролируемый анализ больших данных: признание вины на основе индивидуальных предсказаний будущего поведения.
Большие данные – нечто большее, чем холодный мир алгоритмов и автоматики. Существенную роль играют люди со всеми своими слабостями, заблуждениями и ошибками, поскольку эти черты – неотъемлемая часть творчества, интуиции и гениальности человека.
Одни и те же беспорядочные умственные процессы ведут как к унижениям или упорству в заблуждениях, так и к успехам и обретению величия. Это наводит на мысль, что следует приветствовать некоторую неточность как своего рода часть человеческой природы, так же как мы учимся охватывать беспорядочные данные, поскольку они служат большой цели. В конце концов, беспорядочность является важным достоянием мира и нашего мышления. Принять ее и считаться с ней – значит получить преимущества.
Ничто не предопределено, потому что мы всегда можем отреагировать на полученную информацию. Прогнозы больших данных не высечены на камне – это всего лишь наиболее вероятные результаты, а значит, при желании их можно изменить. Мы сами выбираем, как встретить и приручить будущее – словно Мори, отыскавший естественные пути среди огромной глади моря и ветров. Для этого не нужно понимать природу космоса или доказывать существование богов – достаточно больших данных.
Вся деятельность компании Google, как уже было показано в этой книге на многочисленных примерах, построена на данных. Несомненно, они обусловили значительную долю успеха компании. Однако время от времени они же приводят ее к промахам. Сооснователи Google Ларри Пейдж и Сергей Брин длительное время запрашивали от соискателей их балл по тесту SAT (англ. Scholastic Assessment Test – «академический оценочный тест») при поступлении в колледж, а также средний балл при выпуске. Пейдж и Брин рассуждали так: первый показатель отражает потенциал кандидата, а второй – его достижения. Таким образом, состоявшиеся руководители в возрасте 40 лет, которые рассматривались на ту или иную должность, к своему откровенному недоумению, могли быть отсеяны из-за недобора баллов. Компания еще долгое время продолжала требовать эти цифры даже после того, как ее внутренние исследования показали, что между баллами и эффективностью работы нет корреляций.
Существенное свойство больших данных заключается в том, что изменение масштаба приводит к изменению состояния. Далее мы покажем, что это значительно усложняет защиту неприкосновенности частной жизни, но при этом ставит и новую задачу: судить и наказывать людей на основе прогнозов больших данных еще до того, как они совершат преступление. Это сводит на нет идею честности, справедливости и свободы воли и отвергает глубокомысленное принятие решений.
Аналитики больших данных в компании изучают, как на увеличение продаж виртуальных товаров влияет их цвет или выбор друзей. Например, когда данные показали, что игроки FishVille покупают полупрозрачных рыб в шесть раз чаще, чем остальных существ, компания Zynga предложила дополнительные разновидности таких рыб и хорошо на этом заработала. В игре Mafia Wars обнаружилось, что игроки охотнее всего покупают оружие с золотой каймой и белоснежных домашних тигров126. Вряд ли разработчики игр, находящиеся в студии, узнали бы об этом сами. Это им подсказали данные. «Мы аналитическая компания, которая работает под видом игровой. Здесь всем заправляют числа», – говорит Кен Рудин, главный аналитик Zynga127.
Видеоигры – одна из отраслей, где «лейтенанты» больших данных уже пробили себе путь локтями, чтобы встать в ряд с «генералами» экспертных знаний, попутно преобразуя саму отрасль. Рыночный сектор видеоигр ежегодно получает 10 миллиардов долларов прибыли, что превышает кассовые сборы Голливуда. Раньше компания разрабатывала игру, выпускала ее на рынок и надеялась, что та станет хитом. На основе данных о продажах компания готовила продолжение или начинала новый проект. Решения относительно темпа и элементов игры (таких как персонажи, сюжет, объекты, события и пр.) зависели от творческой фантазии дизайнеров, которые относились к своей работе с такой же серьезностью, как Микеланджело расписывал Сикстинскую капеллу. Это было искусство, а не наука, мир догадок и интуиции, как у скаутов из фильма «Человек, который изменил всё».
Фильм «Человек, который изменил всё», снятый по книге Майкла Льюиса, рассказывает правдивую историю Билли Бина – генерального менеджера «Окленд Атлетикс», который отбросил вековую традицию назначения игроков в пользу математически ориентированного подхода с новой системой показателей. Статистические подходы, такие как «средний уровень», канули в прошлое. На смену им пришли на первый взгляд непривычные суждения об игре, например «процент попадания на базу». Подход, основанный на данных, показал скрытую сторону спорта, которая, как правило, ускользала от внимания за привычными атрибутами вроде арахиса и попкорна. Главное, чтобы игрок попадал на базу, и неважно, как он это делал – благодаря своей скорости или хитрости. Когда данные показали, что кража баз является неэффективной, со сцены ушел один из самых интересных, но наименее «продуктивных» элементов игры.