Kitobni o'qish: «ChatGPT. Мастер подсказок, или Как создавать сильные промты для нейросети»
Все права защищены. Никакая часть данной книги не может быть воспроизведена в какой бы то ни было форме без письменного разрешения владельцев авторских прав.
© ООО Издательство "Питер", 2024
* * *
Введение
Даже если вы далеки от технологических трендов, все равно у вас мало шансов ни разу не услышать о нейросетях и прорывах в области искусственного интеллекта (ИИ).
Нейросети то, нейросети се… Нейросети массово лишают работы художников. Нейросети обучают управлению самолетом. Нейросети внедряют в чат-боты, чтобы вживую общаться с клиентами. Этих новостей сегодня так много и число их растет настолько быстро, что даже самый ленивый человек хотя бы мельком, но обратит внимание.
А уж тот, кто не ленив и готов увидеть перспективы применения ИИ в бизнесе, работе, образовании, развлечениях и многом другом, и вовсе смотрит в оба глаза.
В этой книге мы не станем замахиваться на понятие «нейросети вообще», давать сложные и долгие объяснения или делать другие заумные вещи, которые 95 % читателей просто не поймут и начнут зевать.
Наша цель куда проще: мы возьмем один вид нейромоделей (генерация контента) и постараемся подружить вас с ним, перевести ваше общение с ИИ из формата «Что ТЫ такое?» в формат «Привет, поработаем?». Благо у нас (авторов данной книги) для этого есть и наработки, и кое-какой опыт, и собственный инструментарий. Приступим.
LLM и GPT как часть ИИ
ChatGPT – лишь часть глобального явления под названием «искусственный интеллект». Думаем, будет правильно, если мы опишем структуру этого явления, пусть даже самую суть, – чтобы вы могли понять его.
Если же вам нужно еще больше информации, то вы всегда можете спросить ИИ или найти в поисковиках. Это очень просто. Итак, начнем.
Искусственный интеллект (ИИ; от англ. artificial intelligence, AI) – компьютерная технология, которая помогает выполнять задачи, требующие творческого подхода, логического мышления, аналитических способностей и прочих признаков, которыми обладает только человек.
ИИ отличается от обычных программ тем, что может обучаться на основе опыта, менять выводы в зависимости от контекста, анализировать сложные вводные и многое другое.
Архитектура ИИ отчасти похожа на строение человеческого мозга с его нейронными связями. Разница только в том, что в ИИ эти связи – искусственные. Чем сильнее развиваются технологии, чем больше опыта и возможностей накапливается у ИИ и его разработчиков, тем «умнее» становится ИИ, тем больше улучшается качество искусственных связей.
Нейросети – нечто вроде подкласса ИИ. Скажем, если ИИ вообще – это семейство кошачьих, то нейросети – это и гепарды, и львы, и пумы, и домашние рыжие Васьки.
Нейросети опираются на общие принципы работы ИИ, но при этом могут кардинально различаться по уровню задач. Есть разные подвиды нейросетей наподобие рекуррентных, многослойных и т. п., но в данной книге мы не будем о них говорить.
Мы будем рассматривать нейросети по уровню задач. Например, нейросети:
• для распознавания голоса;
• для создания изображений;
• для работы с информацией (контентом) и т. п.
А вот уже внутри одного направления нейросетей (например, контентных) и находится то, с чем конкретно мы будем работать, – LLM.
LLM (от англ. Large Language Model, большие языковые модели) – это обученные модели для выполнения конкретных задач. LLM можно сравнить с ребенком: чем больше с ним общаются, чем больше фактов он узнает, тем больше учится и развивается, пытается анализировать, находить закономерности, работать с вводными данными и делать выводы.
Разные LLM можно обучать совершенно по-разному. Одни из них огромны и тратят колоссальное количество аппаратных ресурсов, для работы им нужны большие залы, наполненные самыми мощными и современными серверами. Другим же LLM хватит и самых простых «бытовых» мощностей.
Одни LLM узкоспециальны и обучаются под конкретную задачу: например, сводить оборот на основе документов одной компании. Другие готовы обслуживать население целых стран и выполнять тысячи разных задач.
Например, YandexGPT, Google Bard и версии GPT от OpenAI – «родственники». Это модели для работы с информацией (контент, написание кода, анализ текстов и т. п). Но чем больше мастерства, сил, средств, наконец, вложено в развитие конкретной LLM, тем радикальнее могут различаться результаты: по уровню знаний, внутренней архитектуре, объему контекста и т. д. При этом цели и задачи однотипных LLM примерно похожи.
А вот если вы хотите, например, рисовать, то нужны LLM наподобие Stable Diffusion, «Кандинский» или Midjourney. Для обработки видео вам понадобятся другие модели. И т. д.
Теперь, когда мы немного разобрались, поговорим о линейке конкретных LLM-моделей – GPT (ChatGPT).
GPT – передовая линейка генеративных нейромоделей для работы с информацией, которую разрабатывает компания OpenAI. Здесь есть небольшой нюанс: известный многим термин ChatGPT (если уж совсем дотошно) – не совсем верное название для всей серии LLM. Так называется лишь знакомый нам интерфейс для работы, похожий на обычный чат.
А вот GPT-3, 4, 5… – это номера конкретных версий моделей компании, где каждая следующая опережает предыдущую по целому ряду показателей.
В этой книге мы будем оперировать словами ChatGPT, «ИИ», «нейросеть», «модель» и т. п., имея в виду в первую очередь GPT от OpenAI. Просто потому, что на момент написания книги это явный лидер, который задает тон.
Но вообще мы создаем книгу универсального промтинга, не привязываясь к конкретному номеру модели и даже к конкретной LLM (что такое промтинг, мы расскажем чуть позже). Самый смак в том, что эти правила одинаковы для всех аналогичных LLM, поэтому подойдут и для других моделей. Почему – об этом еще поговорим, а пока продолжим.
Линейка моделей GPT сегодня опережает другие похожие решения. В OpenAI и начали раньше, и денег, видимо, хватало, и люди там талантливые. Словом, лидеры.
ChatGPT1 постоянно развивается, всегда на несколько шагов впереди. Пока другие LLM доходят до его вчерашнего уровня, он уже машет рукой из завтрашнего дня.
Общение человека с ChatGPT ведется с помощью текстовых запросов (prompts), которые мы далее будем называть промтами или подсказками.
• В тексте они обозначаются вот таким шрифтом.
Суть работы модели выглядит так: человек вводит промт и получает ответ. Главное ее отличие от работы обычных программ в том, что GPT способна создавать ответы в таком виде, как если бы их давал человек.
Например, зададим ChatGPT задачу для пятого класса:
• Реши задачу: из автобуса на остановке вышло 6 пассажиров, а вошло 11. На следующей остановке вышло 8, вошло 9. Сколько пассажиров стало в автобусе, если вначале в автобусе было 24 пассажира?
Ответ модели, по сути, идентичен ходу мыслей обычного школьника (скопировано дословно).
Для решения этой задачи нужно проследить изменение количества пассажиров в автобусе на каждой остановке.
Изначально в автобусе было 24 пассажира. После первой остановки вышло 6 пассажиров, а вошло 11. Таким образом, количество пассажиров увеличилось на 11 – 6 = 5.
24 + 5 = 29 пассажиров после первой остановки.
На следующей остановке вышло 8 пассажиров, а вошло 9. Снова посчитаем изменение количества пассажиров:
29 – 8 + 9 = 30 пассажиров после второй остановки.
Итак, после обеих остановок в автобусе стало 30 пассажиров.
Еще год-полтора назад GPT так не умела, а сегодня – запросто. Это происходит благодаря глубокому машинному обучению – непрерывному процессу, в который входит и обучение моделей новым закономерностям, и расширение нейронных связей за счет увеличения программных мощностей, и колоссальная обратная связь с пользователями.
Чем больше мы общаемся с ChatGPT и чем больше реагируем, давая модели обратную связь, тем больше информации она получает и тем быстрее учится. Возникает тот самый эффект снежного кома.
«Выходит, нейросеть действительно умнеет и становится похожей на человека?» – спросите вы.
Честно – не знаем. Мы изучили массу докладов и лекций как ведущих ученых, IT-специалистов и разработчиков ИИ, так и нейропсихологов, нейрофизиологов и даже социологов. Среди экспертов нет единого мнения, поэтому вопрос остается открытым.
Мы приведем парочку фактов, а вы поразмышляйте и попробуйте сами сделать выводы.
Факт первый. Мы имеем дело уже не с программой, а с чем-то обладающим основами логики и анализа. И дальше навыки ИИ будут только расти. Все это видно по уже существующему прогрессу.
Факт второй. В техническом смысле нейросеть и не должна ничего «понимать» как человек. То есть ей для этого не нужны какие-то личностные или эмоциональные черты.
Почему? Потому что при глубоком машинном обучении сеть и не должна «очеловечиваться», она лишь ищет закономерности, закрепляет успешно подтвержденные и тем самым изучает, как работает человеческий язык. Для выполнения своих задач ей этого хватает.
Предполагается, что она лишь изучает вероятности и старается делать максимально «очеловеченный» вывод на основе наших данных. Например, что в такой-то связке слов и смыслов стоит употребить такие-то слова и смыслы и это даст лучшие результаты. Когда такое подтверждается много-много раз, сеть закрепляет это для себя как факт и делает частью стратегии.
Чтобы понять еще лучше, возьмем простой пример.
Есть некий Сергей Сергеевич, преподаватель истории в вузе. Раньше, рассказывая о временах Ивана Грозного (о которых он знает очень много), Сергей Сергеевич начинал издалека: давал предпосылки, углублялся во второстепенное, долго подводил к сути и т. д.
Со временем он заметил, что такая стратегия не работает. Пока он «раскачивал тему», большинство студентов теряли интерес. Да, кое-кто слушал, но 95 % – зевали.
Тогда Сергей Сергеевич начал корректировать свои лекции. Он отмечал, какой материал студенты понимают, а какой – не очень, к чему они быстро проявляют интерес, а где начинают смотреть на часы. И вот так, шажками, он создал конструкцию лекции, которая и по объему, и по уровню знаний была интересна большинству.
И теперь, когда приходит время лекций об Иване Грозном, Сергей Сергеевич читает их в рамках этой конструкции. Она обкатана. Она работает и дает лучший результат.
Примерно то же самое происходит и с GPT, только таких Иванов Грозных у моделей миллиарды, и закономерности постоянно обновляются, оптимизируются, шлифуются.
А теперь вопрос: в разрезе повышения качества лекций так ли нам важно, какой Сергей Сергеевич человек? Дарит ли жене цветы, ворчит ли на молодежь и бьет ли котиков по лапкам? Пожалуй, не очень. В контексте преподавания он интересен нам только как некий носитель знаний и объект, который изучает закономерности конкретно для лекций. Всё.
Точно так же не обязательно, что GPT должна «очеловечиваться» или расти в каком-то личностном или эмоциональном плане. Главное, что модель умеет учиться и становиться технически сильнее.
А вот наступит ли такой этап, когда, дойдя до определенного уровня развития, ИИ вдруг осознает себя как личность, или нет – это доподлинно не известно. Кто-то считает, что такое вероятно, кто-то только смеется. Так что не будем углубляться в эти дебри и просто пойдем дальше.
Итак, ChatGPT не только решает математические задачи. Модель открывает огромный пласт возможностей. С помощью нейросети можно делать что угодно:
• создавать опросы и анализировать текст;
• отвечать на вопросы и помогать с выбором на основе данных;
• придумывать диалоги и писать целые книги;
• программировать и разрабатывать новые алгоритмы;
• учиться языкам и сочинять поздравления;
• создавать контент для соцсетей и сайтов;
• играть в квестовые игры и искать логические ошибки;
• разрабатывать полезные меню и списки для саморазвития;
• находить лучшие аргументы для споров и писать сценарии;
• и многое, многое, многое другое…
Это очень сжатый перечень. А впереди нас ждут все те нюансы промтинга, которым посвящена книга. Мы вместе погрузимся в удивительный мир GPT и, что самое главное, научимся чувствовать себя там уверенно и комфортно.
Для какой версии GPT подходит эта книга
Повторимся: изначально мы создавали книгу, которая никак не привязана ни к одной модели. И даже если завтра сменятся тренды и на место GPT придет какой-то новый игрок, все равно ничего не изменится. Книга все так же будет актуальна.
Почему? По двум причинам.
Промтинг универсален. Наша книга не о возможностях какой-то конкретной версии GPT или другой модели. И в ней нет набора из тысячи простых промтов, которые, честно говоря, любой человек может штамповать сотнями в час, если имеет минимальные навыки промтинга.
Эта книга о создании запросов вообще, о промт-инжиниринге (промтинге) как явлении и системе. Мы пока вообще не касались промтинга, но именно ему и посвящена вся книга.
Да, в книге будут примеры промтов из разных ниш. Но не в качестве основного наполнителя и самоцели, а лишь как инструменты для развития креативности и понимания путей. В основном же мы будем давать не рыбу, а удочки, чтобы вы сами ловили свою рыбу. А рыба и сегодня, и завтра будет ловиться примерно по тем же законам.
Почему? Потому что…
ИИ развивается, но человек – статичен. Возможно, когда-то будет достаточно коснуться приложения, и GPT 70-й версии просканирует ваш мозг, поймет все желания, вашу целевую аудиторию, нужный стиль текста, а потом сразу выдаст идеальный контент, от которого все упадут в экстазе.
Но пока оптимальная модель взаимодействия конкретна:
• человек спрашивает – ИИ отвечает;
• человек задает рамки – ИИ подгоняет ответ под них;
• человек уточняет – ИИ отвечает еще лучше (в идеале).
Всё. Иных путей взаимодействия человека и машины просто не существует. Да, ИИ может быть невероятно крутым и развиваться с бешеной скоростью, но все равно нейросеть должна ориентироваться на отстающего. На среднего человека. И никак иначе.
Всегда есть среднестатистический пользователь, который обладает определенным уровнем интеллекта. Если мы говорим о коммерческом продукте, то ИИ все равно придется подстраиваться под того самого обычного человека, который просто хочет спросить и получить классный ответ.
Значит, все процессы взаимодействия с ИИ так и останутся примерно на одном уровне. Да, еще обязательно усилится точность и качество ответов в новых версиях, но это опять же говорит только о том, что будут расти качественные показатели машины, а не человека. Сам процесс общения не может ни сильно усложниться, ни упроститься.
Почему не усложнится? Потому что тогда потеряется массовая привлекательность продукта. Что-то слишком сложное не работает на широкую аудиторию. Да и прогресс – всегда про упрощение задач. Чем быстрее и легче, тем лучше, но никак не наоборот.
Почему не упростится? А уже некуда упрощать, промты сегодня и так максимально простые. Да, можно упростить какие-то конкретные детали, например вариант ввода голосом, возможность выбора стиля или библиотеки усилителей (как это сделано у нас в сервисе NeuroPanda (о нем расскажем чуть позже)).
Можно сделать надстройку к LLM с помощью обычного промтинга (например, А-блоки в NeuroPanda) или программирования (IT-архитектура под нужды конкретной компании), благодаря которым модели сразу будут знать, что вам нужен, скажем, текст лендинга в убедительном стиле.
Но сам по себе формат промтинга уже и так максимально приближен к реальности. Даже если вы будете просить не ИИ, а вполне себе живого специалиста написать вам какой-то конкретный текст, вы как минимум хотя бы раз тоже должны дать ему некие требования и вводные. Все то же самое, что и с ИИ.
Повторимся: эта книга не о версиях, а о мастерстве промт-инжиниринга вообще – как навыка, профессии и в чем-то даже искусства. В книге много практики, примеров, фишек и только самая полезная информация.
Bepul matn qismi tugad.