Основной контент книги Верховный алгоритм. Как машинное обучение изменит наш мир
Matn

Hajm 480 sahifa

2015 yil

12+

Верховный алгоритм. Как машинное обучение изменит наш мир

4,7
44 baho
livelib16
4,0
97 baho
Sotuvda yo'q
Elektron pochta
Kitob sotuvga chiqqanda sizga xabar beramiz

Kitob haqida

Машинное обучение преображает науку, технологию, бизнес и позволяет глубже узнать природу и человеческое поведение. Программирующие сами себя компьютеры – одна из самых важных современных технологий, и она же – одна из самых таинственных.

Ученый-практик Педро Домингос приоткрывает завесу и впервые доступно рассказывает о машинном обучении и о поиске универсального обучающегося алгоритма, который сможет выуживать любые знания из данных и решать любые задачи. Чтобы заглянуть в будущее и узнать, как машинное обучение изменит наш мир, не нужно специального технического образования – достаточно прочитать эту книгу.

На русском языке публикуется впервые.

Barcha sharhlarni ko'rish

В последнее время жизнь все чаще и чаще подбрасывает задачи, решения которых предполагает использование машинного обучения (МО). Увы, к данной теме весьма сложно подступиться, поскольку в виду своей обширности и многогранности она очень похожа на кроличью нору – без начала и без конца. В подходе к таким «снарядам», обычно не остается ничего иного, как начать распутывание клубка знаний с первой попавшейся ниточки, а дальше уже своими силами подвергать их уточнению, классификации, обобщению и т.п. Однако, согласитесь, что куда как приятнее перед сражением окинуть взором поле боя целиком с высоты птичьего полета, чтобы сразу понимать всю его географию. Мне повезло.


В отпуск я взял с собой книгу Педро Домингеса «Верховный алгоритм». Она оказалась именно таким высокоуровневым введением в предметную область, с которого комфортно начинать погружение. Автор имеет профильную научную степень, работает на кафедре информатики и инженерии Вашингтонского университета, ведет популярный курс на Coursera, имеет богатый практический опыт. В научно-популярной форме без лишней математики он проводит подробный экскурс по всем значимым школам машинного обучения. В отличие от технической литературы, книга очень живая. Она изобилует историческими зарисовками, личностями, а само накопление знаний рассматривается в динамике со взлетами и падениями разных подходов, их взаимным влиянием и соперничеством. Не останавливаясь на рассмотрении технических аспектов предметной области, Домингес идет гораздо глубже – в ее философские основания. Он в лицах повествует, каким образом современное многообразие форм машинного обучения явилось результатом борьбы приверженцев эмпиризма и рационализма. Рассмотрев сильные стороны и врожденные ограничения каждой из школ, автор подводит нас к мысли, что будущее в их синергии. В кульминационной части книги Домингес демонстрирует свою версию «Верховного алгоритма», полученного путем их скрещивания с символическим названием Alchemy.


В книге освещаются пять школ. Каждая из них имеет свой ответ на вопрос английского мыслителя Юма «…как в принципе можно оправдать экстраполяцию того, что мы видели, на то, чего мы не видели?» В качестве ответа каждый подход предъявляет свою базовую модель представления знаний и сопутствующие ей методы оценки и оптимизации. Представления – формальный язык, на котором алгоритм машинного обучения выражает свои модели. Формальный язык символистов – логика, частные случаи которой – правила и деревья решений. Для коннекционистов это нейронные сети. Для эволюционистов – генетические программы, включая системы классификации. Для байесовцев – графические модели, общий термин для байесовских и марковских сетей. Для аналогизаторов – частные случаи, возможно, с весами, как в методе опорных векторов.


Не менее ценным материалом, чем собственно содержание книги, является библиография в её конце. Домингес за ручку проводит читателя по залежам доступной литературы, рассказывая, в какой последовательности её лучше изучать и какие предварительные знания подразумеваются в том или ином случае. Более того, рекомендуемый материал состоит отнюдь не только из технических книг. Среди них есть и научно-популярные, рассматривающие вызовы, встающие перед человечеством на пути к созданию искусственного интеллекта.

Переходный период окажется бурным, но благодаря демократии все кончится хорошо. (см. глава 10)

Если кратко, то книга понравилась и уже расходится на цитаты используемых при обсуждении ии, бигдаты и машинного обучения…иногда в шутку, а иногда всерьез :)


В книге много фактов из реального мира на которые ссылаются по тексту для примеров, это позволяет погуглить неизвестные факты и расширить знания о вещах которых раньше не знали. Причем факты не очень старые.


Также затрагивается работа многих современных технологических компаний


В книге два основных вектора, которые переплетаются:


1) раскрываются как сами пути по которым шли и идут разработчики машинного обучения

2) области применения в которых применение машинного обучения уже пробовали, используют и планируется использовать


Читается легко, а так как диаграмм мало, то можно порекомендовать купить электронную книгу и загнать в любую «говорилку», чтобы слушать в машине или в транспорте. К сожалению оригинальной аудио книги нет пока.


В конце есть список литературы разбитый по главам книги, те это не просто общий список. К примеру вам хочется раскопать какую-то главу глубже, то именно по нужной главе собрана вся рекомендуемая литература. Этот удобно, но это редкий вид заботы о читателях.


В конце книги вас ждет приглашение от автора принять участие в создании самого «верховного алгоритма».


"Спасибо, что взяли меня своим проводником. На прощание у меня есть для вас подарок. Ньютон говорил, что чувствует себя мальчишкой, играющим на берегу: он берет то камушек, то ракушку, а перед ним лежит

огромный, неизведанный океан истины. Прошло три столетия, и мы собрали удивительную коллекцию гальки и раковин, но великий неизведанный океан все так же простирается перед нами и играет лучиками надежды. Мой подарок – это лодка машинного обучения, и пришло время поднять паруса."

Вроде бы она написана специально без формул в научпоп стиле, но в ней есть есть достаточно продолжительные куски со сложными концепциями.


В целом, можно порекомендовать как специалистам в области ml, как несложное развлекательное чтиво, так и людям, которые хотят на каком-то уровне войти в мир этих знаний (менеджеры, разработчики без ml знаний).


Первые могут что-то разложить для себя по полочкам, порефлексировать, что-то освежить, или открыть с новой стороны.

Вторые начнут ориентироваться в зоопарке моделей, где и что можно применять. В конце есть хорошая глава про рекомендуемую литературу и курсы для тех, кто хочет развиваться в этой области

Очень полезное чтение для всех интересующихся вопросами искусственного интеллекта и машинного обучения. Рекомендую для прочтения

Очень хорошее научно популярное введение в машинное обучение. Есть моменты, которые будет тяжело понять не специалисту, но общую картину это никак не испортит. Наверное, будет полезна как интересующимся ML, так и специалистам ML, которые хотят преподавать или просто рассказывать близким про свою работу

Kiring, kitobni baholash va sharh qoldirish uchun

В рассказе «Фунес памятливый» Хорхе Луис Борхес повествует о встрече с молодым человеком с идеальной памятью. Сначала такой дар может показаться редким везением, но на самом деле это ужасное проклятье. Фунес может вспомнить точную форму туч в небе в произвольный момент времени в прошлом, но ему сложно понять, что собака, которую он видел сбоку в 15:14, — та же самая собака, которую он видел спереди в 15:15, и он каждый раз удивляется собственному отражению в зеркале. Фунес неспособен обобщать, поэтому для него две вещи одинаковы, только если они выглядят идентично, вплоть до мелочей. Неограниченное обучение правилам похоже на Фунеса и совершенно неработоспособно. Учиться — значит забывать о подробностях в той же степени, как помнить о важных элементах. Компьютеры — высшее проявление синдрома саванта: они без малейших проблем запоминают все, но хотим мы от них не этого

Ньютон говорил, что чувствует себя мальчишкой, играющим на берегу: он берет то камушек, то ракушку, а перед ним лежит огромный, неизведанный океан истины. Прошло три столетия, и мы собрали удивительную коллекцию гальки и раковин, но великий неизведанный океан все так же простирается перед нами и играет лучиками надежды. Мой подарок — это лодка машинного обучения, и пришло время поднять паруса.

Машинное обучение иногда путают с искусственным интеллектом. С формальной точки зрения это действительно подраздел науки об искусственном интеллекте, однако он очень разросся и оказался настолько успешным, что затмил гордого родителя. Цель искусственного интеллекта — научить компьютеры делать то, что люди пока делают лучше, а умение учиться — наверное, самый важный из этих навыков, без которого компьютерам никогда не угнаться за человеком. Остальное приложится.

Точность на данных, которые алгоритм еще не видел, — настолько строгий критерий, что многие научные теории его не проходят. От этого они не становятся бесполезными, ведь наука — это не только предсказания, но и объяснение и понимание, однако в итоге, если модели не делают точных прогнозов на новых данных, нельзя быть уверенным, что лежащие в основе явления по-настоящему поняты и объяснены. А для машинного обучения тестирование на скрытых данных незаменимо, потому что это единственный способ определить, случилось ли с обучающимся алгоритмом переобучение.

Итак, если Верховный алгоритм существует, на что он похож? На первый взгляд, очевидный ответ — на запоминание. Просто запоминай все, что видишь, и через некоторое время увидишь все, что только можно увидеть, и таким образом узнаешь все, что только можно узнать.

Kitob Педро Домингоса «Верховный алгоритм. Как машинное обучение изменит наш мир» — fb2, txt, epub, pdf formatlarida yuklab oling yoki onlayn o'qing. Fikr va sharhlar qoldiring, sevimlilarga ovoz bering.
Yosh cheklamasi:
12+
Litresda chiqarilgan sana:
07 iyul 2016
Tarjima qilingan sana:
2016
Yozilgan sana:
2015
Hajm:
480 Sahifa 34 illyustratsiayalar
ISBN:
9785001001720
Yuklab olish formati: