Kitobni o'qish: «История всего. 14 миллиардов лет космической эволюции. 3-е международное издание»
3-е международное издание
Права на издание получены по соглашению с W. W. Norton & Company. Все права защищены. Никакая часть данной книги не может быть воспроизведена в какой бы то ни было форме без письменного разрешения владельцев авторских прав.
Информация, содержащаяся в данной книге, получена из источников, рассматриваемых издательством как надежные. Тем не менее, имея в виду возможные человеческие или технические ошибки, издательство не может гарантировать абсолютную точность и полноту приводимых сведений и не несет ответственности за возможные ошибки, связанные с использованием книги.
Переводчик Л. Киселева
© 2004 by Neil deGrasse Tyson and Donald Goldsmith
© Перевод на русский язык ООО «Прогресс книга», 2024
© Издание на русском языке, оформление ООО «Прогресс книга», 2024
© Серия «New Science», 2024
* * *
Благодарности Нилу Деграссу Тайсону
«[Тайсон] затрагивает широкий спектр тем… с большим юмором, беспристрастностью и, что самое главное, добротой».
Entertainment Weekly
«Выдающаяся личность… Астроном до мозга костей».
Карл Циммер, Playboy
«Одно дело – быть прославленным астрофизиком, и совсем другое – уметь ко всему относиться с юмором. Сочетание этих черт встречается очень редко, но Нил обладает им в полной мере».
Джон Стюарт, The Daily Show
«Тайсон – удивительный человек, его страсть к познанию законов природы органично сочетается со способностью увлекательно объяснять самые разные темы – от темной материи до абсурдности существования зомби».
Parade
«[Тайсон] фонтанирует идеями».
Лиза де Мораес, Washington Post
«Нил Деграсс Тайсон – один из лучших представителей научной мысли на свете».
Мэтт Блюм, Wired
«Ныне как никогда важно находить авторов, способных рассказать не только о самих открытиях, но и том, как они совершались. Один из таких авторов – Нил Деграсс Тайсон».
Энтони Дорр, Boston Sunday Globe
«Тайсон популяризирует науку, и его мнение авторитетно».
People
«Яркий наследник Карла Сагана, объединивший в себе редкое сочетание мудрости и коммуникативных способностей».
Сет Макфарлейн, создатель анимационного ситкома «Гриффины»
Посвящается каждому, кто поднимает глаза к небу, и всем, кто еще не знает, что по-другому просто нельзя.
Предисловие. Рассуждения о происхождении науки и науке о происхождении
В последнее время ответы на вопросы о наших истоках во Вселенной приходят не только из области астрофизики. Трудясь под эгидой целого объединения молодых областей науки, таких как астрохимия, астробиология и физика астрочастиц, астрофизики обнаружили, что взаимодействие с множеством разных научных дисциплин при поиске ответа на вопрос «Как мы здесь оказались?» дает исследователям доступ к информации немыслимой ранее ширины и глубины и помогает анализировать устройство нашей Вселенной.
Во втором издании книги «История всего: 14 миллиардов лет эволюции» мы хотим познакомить вас, читателей, с обновленной единой системой научных знаний, учитывающей потрясающие открытия в биологии, астрономии и астрофизике, совершенные в последнее время. Среди них:
• Обнаружение пяти тысяч «экзопланет», которые в совокупности обладают чрезвычайно богатым разнообразием поверхностных условий и орбитальных характеристик. Условия на некоторых из них определенно благоприятны для зарождения и существования жизни, а это в свою очередь дает нам надежду однажды убедиться, насколько в действительности разнообразна жизнь в космосе.
• Использование астрофизиками детекторов совершенно нового класса, способных улавливать гравитационные волны, которые идут от источников, удаленных на миллиарды световых лет от Земли. Еще Эйнштейн предсказал существование гравитационных волн, но официально подтвердить его правоту научный мир смог только к 2017 году, после того как три независимых детектора, находящихся в разных концах мира, смогли зафиксировать это чудо. Им стало слияние двух черных дыр, каждая из которых в десятки раз массивнее нашего Солнца, – оно породило колебание гравитационного поля, прокатившееся по всей Вселенной.
• Новый взгляд на пять небесных тел, включая Марс, когда-то считавшихся слишком холодными или слишком маленькими для зарождения жизни. Теперь их рассматривают как заслуживающие дополнительного изучения. К ним относятся Церера, которая является крупнейшим из известных астероидов; Европа и Энцелад – спутники Юпитера и Сатурна соответственно: под ледяным покровом они скрывают огромные океаны; а также крупнейший спутник Сатурна Титан, поверхность которого покрыта озерами, образовавшимися благодаря жидкому азоту, – они могут играть ту же роль для зарождения жизни, что и вода на Земле.
• Появление новых наземных и космических обсерваторий. Они помогли расширить наши представления о далекой Вселенной и дали возможность изучать ее не только в видимом свете, но и в других диапазонах, например с помощью инфракрасного излучения и радиоволн. Возросшие возможности обсерваторий также помогли выявить несоответствие между двумя ключевыми методами определения скорости расширения Вселенной, что подтвердило: «кризис в космологии» продолжается, а его разрешение может дать новое понимание законов физики, управляющих космосом.
Эти и другие важные открытия позволяют исследовать происхождение не только Вселенной, но и отдельных крупнейших ее структур, образованных веществом. Среди них звезды, что сияют в космосе, планеты, обладающие наиболее пригодными условиями для зарождения жизни, и, собственно, сама жизнь, которая могла возникнуть на одной или нескольких таких планетах, в других местах Солнечной системы и во всей Вселенной.
Люди проявляют интерес к вопросам происхождения мира по многим причинам как логического, так и эмоционального характера. Мы едва ли способны объять суть чего бы то ни было, пока не узнаем, откуда оно появилось. Из всех историй, что мы когда-либо слышали, именно те, что говорят о первоисточнике, начале начал, находят в нас наибольший отклик.
Врожденная эгоистичность человека, обусловленная эволюцией его вида и приобретенным на Земле жизненным опытом, естественным образом заставляет нас сосредоточиваться на локальных событиях и явлениях, чтобы рассказать истории их происхождения. Однако с каждой новой ступенью знаний о строении Вселенной мы лишь убеждаемся, что живем на крупице космической пыли, которая вращается вокруг самой заурядной звезды где-то на отшибе самой обычной галактики – одной из сотен миллиардов галактик во Вселенной. Сам факт такой космической незначительности запускает в человеческой психике потрясающий защитный механизм. Многие из нас, сами того не подозревая, напоминают того парня из мультфильма, который глядит на звездные небеса и говорит своему приятелю: «Когда я вижу все эти звезды, то поражаюсь тому, сколь они незначительны».
На протяжении всей истории человечества различные культуры предлагали мифы о создании мира, в которых наше происхождение представлялось результатом действия неких высших сил, определяющих судьбу. Такие истории помогали нам бороться с чувством собственной незначительности. Большинство историй о мироздании, как правило, начинается с общей картины, но они с поразительной скоростью добираются до самой поверхности Земли, молнией проносясь сквозь рождение Вселенной, всего ее содержимого, жизни на Земле как таковой, и превращаются в длинные объяснения бесчисленных подробностей истории человечества и его социальных конфликтов, словно мы с вами и есть центр мироздания.
Почти все разрозненные ответы на вопрос о нашем происхождении так или иначе опираются на основополагающую предпосылку, что космос ведет себя в соответствии с рядом общих правил, которые, по крайней мере гипотетически, раскрываются, когда мы начинаем внимательно изучать окружающий нас мир. Философы Древней Греции вознесли эту предпосылку до невероятных высот. Они настаивали, что человек обладает способностью воспринимать и понимать принципы устройства природы, а также базовую реальность, скрытую под зримыми ее проявлениями. Эта реальность и есть те самые фундаментальные истины, управляющие всем на свете. Они также весьма метко утверждали, что докопаться до этих истин будет непросто. Двадцать четыре столетия назад в своем знаменитом высказывании о невежестве человека греческий философ Платон сравнил тех, кто стремится к знанию, с узниками в пещере, прикованными к полу: они не видят того, что у них за спиной, но пытаются постигнуть достоверную суть этих предметов по очертаниям теней на противоположной стене пещеры.
Этим сравнением Платон не просто подытожил попытки человека понять Вселенную, но и подчеркнул нашу естественную склонность к тому, чтобы приписывать таинственным и едва осознаваемым сущностям власть над ней. И это на основании знаний, которые в лучшем случае являются лишь верхушкой айсберга. От Платона до Будды, от Моисея до Мухаммеда, от гипотетического космического творца до современных фильмов о «матрице» – в каждой культуре люди рано или поздно приходят к выводу, что Вселенной управляют высшие силы, которых не смущает та пропасть, что лежит между реальностью и ее поверхностными внешними проявлениями.
Пятьсот лет назад постепенно сформировался и укрепился новый подход к пониманию природы. Сегодня мы называем этот подход наукой. Он появился в результате взаимодействия новых технологий и тех открытий, которые стали благодаря им возможны. Распространение печатных книг в Европе и одновременное улучшение наземного и водного сообщения позволили людям выходить на связь друг с другом быстрее и эффективнее. Они смогли в краткие сроки узнавать, что думают и говорят другие, и отвечать им гораздо быстрее, чем раньше. В XVI и XVII веках такая ускоренная двухсторонняя схема общения постепенно превратилась в новый формат получения знаний, основанный на принципе, что самый эффективный способ познания космоса – это тщательные наблюдения за ним в сочетании с попытками описать общие базовые принципы, которые объясняли бы множество таких наблюдений.
Кроме того, наука зависит от организованного скептицизма – постоянного и методического подвергания сомнению всех и вся. Немногие из нас сомневаются в собственных выводах, так что на практике наука в полной мере применяет базовый скептицизм, воздавая по заслугам тем, кто сомневается в чужих выводах. Возможно, такой подход следует считать неестественным, и не столько потому, что он поощряет недоверие к мыслям других людей, сколько потому, что наука поощряет и награждает тех, кто смог продемонстрировать, что другой ученый был попросту не прав. В глазах других ученых тот, кто смог поправить ошибку коллеги или назвать достойную причину сомневаться в его (или ее) заключениях, совершает благородное дело подобно учителю дзен-буддизма, который бьет по ушам уклоняющегося от медитации ученика. Правда, надо признать, ученые поправляют друг друга как равный равного, а не как учитель ученика.
Воздавая почести ученому, который заметил у другого ошибку – а такая задача в разы проще, чем заметить свои собственные промахи, – ученые создали внутри своего обособленного мирка врожденную систему самокоррекции. Они совместно учредили самый эффективный и действенный инструмент для анализа природы из доступных нам: ученые ищут способы развенчать предложенные другими теории, но исключительно потому, что искренне стремятся внести вклад в развитие человеческого знания. Таким образом, наука – это коллективная погоня за знанием, но уж точно не кружок взаимного восхищения, впрочем, последнее ей совершенно ни к чему.
Как и все попытки человека добиться прогресса, научный подход работает лучше в теории, чем на практике. Не все ученые подвергают друг друга сомнению так старательно, как следовало бы. Необходимость произвести впечатление на отдельных личностей, которые занимают влиятельные должности и иногда оказываются неосознанными жертвами внешних факторов, нередко вмешивается в самокоррекционные процессы науки. Тем не менее в долгосрочной перспективе ошибки не выживают – рано или поздно их обнаружат другие ученые, которые поднимутся по карьерной лестнице, объявив о своем открытии остальным. Те же заключения, которые выдерживают неоднократные нападки других ученых, в конце концов приобретают статус научных законов; их принимают в качестве состоятельных моделей описания реальности, даже при том, что ученые понимают: каждый из этих законов может в один день оказаться лишь частью какого-то большего и более фундаментального порядка вещей.
Однако нельзя сказать, что ученые тратят все свое время на то, чтобы доказать: кто-то другой был не прав. Большинство научных изысканий подразумевает тестирование не до конца утвержденных гипотез с использованием слегка улучшенных результатов наблюдений. Время от времени рождается принципиально новое ви́дение какой-то важной теории, или (чаще всего в эпоху технологического прогресса) целый свод новых наблюдений открывает глаза на новый возможный свод гипотез, которые способны объяснить эти новые наблюдения. Величайшие моменты научной истории всегда связаны с появлением нового объяснения, которое, возможно, вкупе с новыми результатами наблюдений провоцирует резкий скачок в нашем понимании устройства окружающего мира. Научный прогресс зависит от отдельных личностей из обоих лагерей: тех, кто собирает более качественные данные и осторожно делает новые выводы на их основании, и тех, кто рискует многим (но и многое выигрывает в случае успеха), бросая вызов общепризнанным умозаключениям.
Скептическое ядро науки делает ее неважным конкурентом человеческим сердцам и умам, которые шарахаются от ее бесконечных противоречий и предпочитают безопасную надежность вроде как «непреложных» истин. Если бы научный подход предлагал лишь очередную трактовку устройства Вселенной, он никогда бы не добился чего-либо значительного. Выдающийся успех науки заключается как раз в том, что она работает. Если вы полетите на самолете, построенном по всем канонам науки, то есть на основании принципов, которые выдержали бесчисленное количество попыток доказать их несостоятельность, то вы долетите до пункта назначения с гораздо большей вероятностью, чем если бы отправились в путешествие на самолете, собранном по правилам ведической астрологии.
Относительно новая история показывает, что люди, столкнувшиеся с тем, как успешно наука объясняет естественные явления, демонстрируют один из четырех типов реакции. Во-первых, узкое меньшинство принимает научный подход с распростертыми объятиями, видя в нем главную надежду на то, чтобы когда-нибудь понять природу во всем ее многообразии; они не ищут для себя дополнительных вариантов пояснения устройства Вселенной. Во-вторых, гораздо большее количество людей игнорируют науку, считая ее неинтересной, непроницаемой или противоречащей человеческому духовному началу (те, кто жадно смотрит телевизор, ни на секунду не задумываясь, откуда и как в нем появляются изображение и звук, напоминают нам о тесной этимологической связи слов «магия» и «машина»). В-третьих, еще одно меньшинство болезненно реагирует на то, как наука опровергает дорогие их сердцу верования, и потому активно стремится найти способы в свою очередь опровергнуть те научные результаты, что раздражают или даже гневят их. Правда, делают они это вне скептической системы координат науки. Это можно легко установить, просто задав любому из них вопрос: «Какие вещественные доказательства смогут убедить вас в том, что вы не правы?» Эти антиученые все еще пребывают в состоянии шока, столь искусно описанного Джоном Донном в его поэме «Анатомия мира: первая годовщина» в 1611 году, когда начали появляться первые плоды современной науки:
Все новые философы в сомненье.
Эфир отвергли – нет воспламененья,
Исчезло Солнце, и Земля пропала,
А как найти их – знания не стало.
Все признают, что мир наш на исходе,
Коль ищут меж планет в небесном своде
Познаний новых… Но едва свершится
Открытье – все на атомы крушится.
Все – из частиц, а целого не стало…1
Наконец, четвертая – довольно большая – доля общественности принимает научный подход в вопросах изучения природы, при этом сохраняя свою веру в сверхъестественных существ, которые управляют Вселенной за счет механизмов, чья работа находится за гранью нашего понимания. Барух Спиноза, философ, который навел самый прочный мост между естественным и сверхъестественным, отрицал какие-либо различия между природой и Богом и настаивал, что космос есть одновременно и природа, и Бог. Приверженцы более традиционных религий, которые, как правило, утверждают, что это различие есть и оно неоспоримо, часто разрешают для себя эту дилемму, всего лишь разделяя пространства, в которых действуют естественное и сверхъестественное.
К какому бы лагерю вы себя ни относили, нет никакого сомнения в том, что мы живем в благоприятное время для новых открытий, проливающих свет на устройство Вселенной. Так давайте же начнем свое путешествие к истокам человечества в необъятном космосе, побудем немного детективами, которые устанавливают сам факт преступления, исходя из найденных улик. Мы приглашаем вас присоединиться к поискам космических улик и способов их трактовки, чтобы вместе попытаться узнать, как же так вышло, что небольшая часть этой Вселенной превратилась… в нас с вами.
От издательства
Для того чтобы насладиться великолепием цветных фотографий Большого Космоса (в первую очередь снимками с космического телескопа «Хаббл»), скачайте по ссылке файл с иллюстрациями: clck.ru/3DeHsQ.
Часть I. Происхождение Вселенной
Глава 1. В начале всех начал
В начале всех начал была физика. Физика описывает поведение вещества, энергии, пространства и времени и то, как они взаимодействуют друг с другом. В нашем театральном представлении космических масштабов эти взаимодействия лежат в основе всех биологических и химических явлений. По этой причине все фундаментальное и знакомое нам, землянам, начинается с законов физики и именно благодаря им возможно. Применяя эти законы к астрономическим декорациям, мы имеем дело с физикой астрономического масштаба и потому называем ее астрофизикой.
Практически в любой области научных изысканий, но особенно в физике, передовая научных открытий – словно линия на графике, которая соединяет точки экстремальных значений событий и ситуаций, отражающих наши возможности для их измерения. Для вещества такое экстремальное значение представляет собой район черной дыры, где гравитация серьезно искажает окружающий пространственно-временной континуум. На пике энергии при температуре 15 миллионов градусов в ядрах звезд протекает термоядерный синтез. Какое экстремальное значение ни возьми, оно всегда будет связано со умопомрачительно высокой температурой и очень высокой плотностью, характерными для самых первых мгновений жизни нашей Вселенной. Чтобы понять, что происходит в каждом из таких случаев, необходимо вооружиться законами физики, открытыми после 1900 года, в так называемую физиками современную эпоху (это позволяет отделить ее от классической эпохи, куда мы относим всю прочую физику с ее открытиями и теориями).
Одна из ключевых особенностей классической физики заключается в том, что описанные ею события, законы и прогнозы вполне разумны. Все они были открыты и проверены в обычных лабораториях в стенах обычных зданий. Законы тяготения и движения, электричества и магнетизма, природы и поведения тепловой энергии – обо всем этом до сих пор можно узнать на занятиях по физике в старших классах школы. Эти разоблачения тайн природы легли в основу индустриальной революции, изменив культуру и общество так, как предыдущие поколения не могли себе и вообразить, а также по сей день остаются в центре всего происходящего в мире, являются первопричиной всех событий.
В то же время в современной физике ничего разумным не кажется, ведь все события происходят в условиях, лежащих далеко за пределами восприятия доступными человеку чувствами. Это, кстати, даже хорошо. Мы можем радостно заключить, что наша повседневная жизнь протекает совершенно отдельно от физики экстремальных состояний и значений. Вообразите свое самое обычное утро: вы просыпаетесь, бродите по дому, что-нибудь едите и уходите по делам. В конце дня ваши близкие рассчитывают увидеть вас таким же, каким вы были с утра, более того, они уверены, что вы вернетесь домой целым. Теперь представьте себе: вы приезжаете в офис, заходите в перегретый конференц-зал, где в десять утра должно состояться важное собрание, – и вдруг теряете все до одного свои электроны. Или еще хуже – ваше тело рассыпается на миллионы отдельных атомов. Так себе, правда? Ладно, а теперь представим, что вы сидите у себя в кабинете и пытаетесь закончить работу при свете настольной лампы. Вдруг кто-то включает целых 1000 ватт основного освещения – и в результате ваше тело начинает беспорядочно отскакивать от стены к стене, пока вас наконец не выкидывает прямо из окна. А что, если вы пойдете на матч по сумо сразу после работы, где два почти шарообразных джентльмена столкнутся, исчезнут и тут же превратятся в два столпа света, после чего покинут помещение в противоположных направлениях? Или, предположим, по дороге домой вы выбираете непривычный маршрут, и темное здание у обочины сначала затягивает ваши ноги, неимоверно растягивая ваше тело с головы до ног и сжимая ваши плечи, а потом протаскивает вас сквозь узкое длинное отверстие в стене – и вас больше никто не увидит и не услышит…
Если бы подобные вещи происходили с нами в повседневной жизни, современная физика казалась бы нам гораздо менее странной. Наши знания основ теории относительности и квантовой механики были бы естественным отражением нашего жизненного опыта, а наши близкие, скорее всего, ни за что не отпускали бы нас на работу. Но в первые минуты существования Вселенной такие штуки происходили сплошь и рядом! Чтобы представить себе это и хотя бы приблизительно осознать, у нас нет иного выбора, кроме как поставить во главу угла новую форму здравого смысла – этакую адаптированную интуицию, подсказывающую, как именно ведет себя вещество и как законы физики описывают его поведение при экстремальных значениях температуры, плотности и давления.
Добро пожаловать в мир, где E = mc2.
Впервые Альберт Эйнштейн опубликовал свое знаменитое уравнение в 1905 году в фундаментальной научной статье «К электродинамике движущихся тел», которая вышла в ведущем немецком научном журнале «Анналы физики»2. Она гораздо более известна как специальная теория относительности Эйнштейна: в ней были сформулированы понятия, навсегда изменившие наши представления о времени и пространстве. А ведь в 1905 году сотруднику патентного бюро в швейцарском городе Берне Эйнштейну было всего 26 лет. Позднее в этом же году он внес ряд дополнений в трактовку самого известного своего уравнения в новой выдающейся статье, уместившейся на двух с половиной страницах того же журнала, она называлась «Зависит ли инерция тела от содержащейся в нем энергии?» Не тратьте время на поиски оригинала статьи, эксперименты и проверку теории Эйнштейна: ответ на этот вопрос – «да». Как писал Эйнштейн, используя L там, где ныне мы используем E, и V для обозначения скорости света, которая в настоящее время обозначается как c:
«Если тело отдает в виде излучения энергию L, его масса уменьшается на величину L / V2. <…> Масса тела является мерой энергии, которая в нем содержится; если изменить энергию на L, масса изменится соответственно на L / 9 × 1020».
Не до конца убежденный в собственной правоте, он затем предполагает:
«Вполне вероятно, что данную теорию можно проверить на практике, изучив тела, энергия которых способна значительно изменяться (например, соли радия)».
Вот он – алгебраический рецепт на случай, если вам захочется преобразовать вещество в энергию или энергию в вещество. E = mc2: энергия равняется массе, умноженной на скорость света в квадрате. Эта формула – эффективный вычислительный инструмент, дарящий нам широкие возможности для познания и осознания Вселенной: от ее сегодняшнего состояния и до ничтожных долей секунды после зарождения космоса. Она позволяет определить, сколько энергии может излучать звезда или сколько вы выгадаете, переведя монеты из своего кармана в полезную форму энергии.
Наиболее знакомая всем форма энергии освещает все вокруг, хотя многие даже не догадываются о ее энергетической сути и не задумываются о ее названии. Речь о фотоне – невесомой неделимой частице видимого света или любой другой формы электромагнитного излучения. Мы живем, постоянно купаясь в море из фотонов: они исходят от Солнца, Луны и звезд; духовок, люстр и ночников; сотен теле- и радиостанций; бесчисленных сигналов сотовых телефонов и радаров. Почему же мы не наблюдаем, как день за днем, каждый день энергия превращается в вещество, или наоборот? Дело в том, что энергия обычных фотонов слишком мала, много меньше выраженной через формулу E = mc2 массы самых крохотных элементарных частиц. Такие фотоны производят слишком мало энергии, чтобы превратиться во что-либо еще, поэтому их удел – весьма незатейливое существование.
Хотите наглядный пример работы формулы E = mc2? Обратитесь к фотонам гамма-излучения – в них как минимум в 200 000 раз больше энергии, чем в видимых фотонах. Вы очень быстро заболеете раком и умрете, но перед этим вам удастся разглядеть пары электронов: один из вещества, а другой из антивещества (физики называют их электроном и позитроном соответственно). Как и множество подобных динамичных пар в нашей Вселенной, они будут появляться там, где раньше были фотоны. Вы также увидите, как эти пары электронов, сталкиваясь, аннигилируют и вновь превращаются в фотоны гамма-излучения.
Увеличим энергию фотонов еще в 2000 раз и получим гамма-лучи, энергии которых хватит на то, чтобы превратить предрасположенных к этому людей в зеленых монстров наподобие Халка. Пары таких фотонов обладают энергией, описанной уравнением E = mc2 и достаточной для того, чтобы создавать такие частицы, как нейтроны, протоны и их «антиверсии» – античастицы, каждая из которых имеет массу почти в 2000 раз больше массы обычного электрона. Фотоны с высокой энергией существуют во многих космических горнилах мироздания. Для гамма-излучения подходит практически любая среда, температурой выше нескольких миллиардов градусов.
Трудно переоценить космологическую важность наличия частиц и квантовой энергии, превращающихся друг в друга. В данный момент температура нашей расширяющейся Вселенной, которую можно вычислить, измерив все микроволновые фотоны во всем мировом пространстве, составляет смешные 2,73 градуса по шкале Кельвина. В ней нет отрицательных температур: частицы с наименьшей энергией располагаются на нулевой отметке; комнатная температура составляет 295 градусов; вода кипит при 373 градусах. Как и фотоны видимого света, микроволновые фотоны выше любых суетных попыток превратиться в какие-то частицы под диктовку формулы E = mc2. Проще говоря, нам неизвестны частицы со столь малой массой, что в них мог бы превратиться микроволновый фотон. То же самое можно сказать и о фотонах, которые составляют радиоволны, инфракрасный и видимый свет, а также ультрафиолетовые и рентгеновские лучи. Еще проще говоря, для преобразований частиц необходимо гамма-излучение. Однако вчера Вселенная была чуть меньше и чуть горячее, чем сегодня, а позавчера – еще чуть меньше и горячее. Теперь откатимся назад, скажем на 13,8 миллиарда лет, и окажемся в самой гуще первичного бульона, образовавшегося после Большого взрыва. Тогда температура космоса была достаточно высокой для того, чтобы представлять собой астрофизический интерес, а гамма-излучение постепенно наполняло Вселенную.
Расшифровка поведения пространства, времени, вещества и энергии от Большого взрыва до сегодняшнего дня – одна из величайших побед человеческого разума. Если вам требуется развернутое объяснение всего, что происходило еще раньше, когда Вселенная была меньше и горячее, чем когда-либо потом, вам нужно найти способ заставить четыре фундаментальных взаимодействия – гравитационное, электромагнитное, сильное и слабое ядерные – снова объединиться в одно целое и превратиться в единое метавзаимодействие. Вам также будет необходимо найти способ примирить между собой две физические дисциплины, которые в данный момент несовместимы друг с другом: квантовую механику (науку о малом) и общую теорию относительности (науку о большом).
Воодушевленные объединением квантовой механики и электромагнетизма в середине XX века, которое прошло столь же успешно, как объединение электричества и магнетизма столетием ранее, физики занялись слиянием квантовой механики и общей теории относительности в единую стройную теорию квантовой гравитации. Хотя ничего путного у них пока не вышло, мы уже знаем, когда произошло все самое интересное: во время так называемой планковской эпохи. Она описывает стадию развития космоса вплоть до 10–43 секунд (это одна десятимиллионо-миллиардно-миллиардно-миллиардная доля секунды) от начала времен. Так как информация никогда не путешествует быстрее скорости света (3 × 108 м/с), гипотетический наблюдатель, расположившийся где угодно во Вселенной во время планковской эпохи, смог бы увидеть не далее чем на 3 × 10–35 м вокруг себя (это три стомиллиардно-миллиардо-миллиардных метра). Немецкий физик Макс Планк, в честь которого и были названы эти с трудом вообразимые времена и расстояния, выдвинул гипотезу о квантовой энергии в 1900 году. Сегодня Планк – главный кандидат в общепризнанные отцы квантовой механики.
Однако с точки зрения повседневной жизни волноваться совершенно не о чем. Разногласия квантовой механики и силы тяготения не представляют практических проблем для современной Вселенной. Астрофизики используют принципы и инструменты общей теории относительности и квантовой механики в работе над совершенно разными категориями задач. Однако в самом начале, в планковскую эпоху, большое было одновременно и малым, значит, должен существовать какой-то способ, пусть даже поневоле, реабилитировать отношения этой семейной пары. Да, как ни печально, клятвы, произнесенные тогда у космического алтаря, нам пока узнать не удается, и потому ни один из известных нам законов физики не описывает достаточно убедительно, что же происходило во время краткого медового месяца Вселенной – до того, как ее расширение заставило большое и малое разойтись навсегда.