«Большой роман о математике. История мира через призму математики» kitobidan iqtiboslar

Спустя час игры необходимо было сделать тридцать седьмой ход, и игра выглядела непримиримой. Именно тогда ход AlphaGo удивил всех специалистов, которые следили за игрой. Компьютер решил поставить свой черный камень в положение O10. Комментатор, который освещал эту игру в Интернете, сделал большие глаза. Затем он установил камень на своей демонстрационной доске и нерешительно продолжил. Он перепроверил сделанный компьютером ход и в итоге разместил его на своей доске. «Это удивительный ход!» – воскликнул он с недоуменной улыбкой. «Это должно быть ошибкой», – сказал второй комментатор. Ведущие специалисты со всего мира также выразили изумление. Компьютер только что сделал огромную ошибку или это настолько гениальный ход? Через три с половиной часа и спустя сто семьдесят четыре хода, ответ был получен: корейский чемпион повержен, машина победила. Какими только прилагательными ни называли знаменитый 37-й ход после окончания игры. Креативный. Уникальный. Захватывающий. Ни один человек не сыграл бы так, потому что в соответствии с традиционной стратегией этот ход считается плохим, но все же он привел к победе! Возникает вопрос: как компьютер, который лишь следует алгоритму, написанному людьми, может сделать креативный ход? Ответ на этот вопрос заключается в новых типах алгоритмов обучения. Программисты на самом деле не научили компьютер играть. Они научили его учиться играть! Во время тренировок AlphaGo потратил тысячи часов, играя против себя же самого, в результате чего вывел ходы, приводящие к победе. Еще одной его особенностью стало введение элемента случайности в его алгоритм. Количество возможных комбинаций в го настолько велико, что их невозможно просчитать даже с помощью компьютера. Так, AlphaGo выбирает, какой сделать следующий ход, на основании теории вероятностей. Компьютер использует небольшую выборку из всех возможных комбинаций и таким же образом на основании полученных выводов, сделанных исходя из данных по этой небольшой группе, определяет ходы, которые с наибольшей вероятностью приведут к победе. Это и есть часть тайны интуиции и оригинальности AlphaGo: не думать систематически, а соотносить возможные сценарии развития в соответствии с их вероятностью. Помимо стратегии игры компьютеры, оснащенные в той или иной

Таким образом, мы видим: вероятность победы первого игрока 75 %, второго – 25 %. Вывод, сделанный Паскалем и Ферма, заключается в том, что необходимо поделить игровой банк в соответствии с вероятностью победы: первый игрок – 75 %, а второй – оставшиеся 25 %. Рассуждения французских ученых лягут в основу дальнейших исследований в этой области. Такой подход применим к большинству азартных игр. Швейцарский математик Якоб Бернулли был одним из первых, кто стал заниматься исследованиями в этой области и в конце XVII в. написал книгу под названием «Искусство предположений» (итал. Ars Conjectandi), опубликованную только после его смерти в 1713 г. В этой книге он привел анализ традиционных азартных игр и впервые сформулировал один из основополагающих принципов теории вероятности: закон больших чисел. Этот закон подтверждает, что чем больше раз будет повторяться описанный выше прием, тем более точным окажется определение вероятности, стремящееся к своему пределу. Иными словами, если продолжать эти рассуждения в долгосрочной перспективе, средние значения перестают быть случайными.

Микаэль Лонэ Большой роман о математике Mickael Launay LE GRAND ROMAN DES MATHS: DE LA PRÉHISTOIRE À NOS JOURS © Flammarion, Paris, 2016 © Михайлов В. Г., перевод на русский язык, 2017 © ООО «Издательство «Эксмо», 2018 * * * – Ох, я никогда ничего не смыслила в математике! Эту фразу я слышу уже, наверное, десятый раз за сегодня, и она перестает меня удивлять. Тем не менее около четверти часа эта дама стояла около моего стенда в середине группы других посетителей и внимательно слушала, как я рассказывал о своих любопытных наблюдениях из области геометрии. Эта фраза прозвучала в следующем контексте. – И чем же вы занимаетесь? – поинтересовалась она.

Цифры в ячейках определяются двумя правилами. Во-первых, в крайних ячейках содержатся числа 1. Во-вторых, числа, записанные во внутренних ячейках, равны сумме чисел двух ячеек, расположенных непосредственно над ними. Например, число 6, записанное в ячейке на пятой строке, получено в результате сложения двух 3, которые расположены над ним. На самом деле этот треугольник был известен еще задолго до того момента, когда им заинтересовался Паскаль. Персидские математики аль-Караджи и Омар Хайям открыли его еще в XI в. В то же время его свойства изучал в Китае Цзя Сян, чью работу продолжит в XIII в. Ян Хуэй. В Европе Тарталья и Виет также знали о его существовании. Тем не менее Блез Паскаль был первым, кто посвятил этому явлению такой полный и подробный трактат. Он также был первым, кто заметил тесную связь между этим треугольником и подсчетом вероятности. Каждая строка треугольника Паскаля позволяет подсчитать количество возможных вариантов последовательности событий с двумя вариантами,

В 1654 г. Блез Паскаль опубликовал книгу под названием «Трактат об арифметическом треугольнике». Он описывал треугольник, состоящий из ячеек, внутри каждой из которых содержатся числа.

10 марта 2016 г. весь мир устремил свои взгляды в сторону Сеула. Здесь проводился долгожданный матч-реванш лучшего игрока в мире по игре го, корейца Ли Седоля, против компьютерной программы AlphaGo (Альфа Гоу).

Первое колесико справа обозначает число единиц, второе – десятков и так далее. Над колесиками расположены шесть маленьких ячеек, по одному для каждого колесика, в которых отображаются цифры. Для того чтобы ввести число 28, необходимо просто повернуть колесико десятков на два деления по часовой стрелке и колесико единиц – на восемь делений. С помощью внутренней системы шестеренок, в области отображения в соседних взаимосвязанных ячейках отобразятся 2 и 8. И теперь, если вы захотите добавить 5 к этому числу, нет необходимости ничего держать в уме: достаточно просто повернуть колесико единиц на пять делений и, когда значение сменится с 9 на 0, значение десятков автоматически сменится с 2 на 3. Значение, отображаемое на машине, теперь равно 33.

Этап A. Введите число 1 в ячейку памяти № 1, а затем перейдите к шагу B. Этап B. Введите число 1 в ячейку памяти № 2, а затем перейти к шагу C. Этап C. Введите в ячейку памяти № 3 сумму чисел, находящихся в ячейке памяти № 1 и ячейке памяти № 2, а затем перейдите к шагу D. Этап D. Введите в ячейку памяти № 1 число из ячейки памяти № 2, а затем перейдите к шагу E. Этап E. Введите в ячейку памяти № 2 число из ячейки памяти № 3, а затем перейдите к шагу C. Можно заметить, что машина будет зациклена, так как на этапе Е она возвращается к этапу C. Таким образом, этапы C, D, E будут повторяться бесконечно.

На этапах А и В были введены первые два члена последовательности: 1 и 1. На этапе C вычисляется сумма двух предыдущих чисел. На этапах D и Е в память заносятся последующие числа из ряда таким образом, чтобы алгоритм мог работать циклично. Если вы заходите проверить, как работает данный алгоритм, то сможете убедиться, что получится следующая последовательность чисел: 1, 1, 2, 3, 5, 8, 13, 21 и т. д. Несмотря на то, что алгоритм выглядит достаточно просто на первый взгляд, машина Тьюринга все еще не способна его обработать. В соответствии с определением, данным их автором, эта машина не может осуществлять операцию сложения, как это указано на этапе C. В ее функции входят только внесение, прочтение и замена элементов в памяти в соответствии с инструкциями на каждом этапе. Таким образом, можно задать ей алгоритм сложения, согласно которому числа складываются в соответствии с их разрядами и запоминанием чисел в уме, по аналогии со счетами. Другими словами, сложение не является частью аксиоматики машины, а это уже одна из ее теорем, которые должны иметь свой алгоритм для использования. После того как этот алгоритм будет составлен, он может быть использован на этапе C, и машина Тьюринга, таким образом, вычислит числа Фибоначчи. Повышая сложность задач, можно научить машину Тьюринга выполнять операции умножения, деления, возведения в квадрат, извлечения квадратного корня, находить решения уравнений и тригонометрические соотношения, вычислять приближенное значение числа π, определять декартовы координаты геометрических фигур или исчислять бесконечно малые величины. Таким образом, при условии составления соответствующих алгоритмов машина Тьюринга способна решать любые математические задачи, которые мы уже успели рассмотреть, причем точность таких расчетов будет значительно выше. Теорема о четырех красках Возьмем карту территории, состоящую из нескольких областей, отделенных друг от друга границами. Какое минимальное количество цветов необходимо использовать при их раскрашивании, чтобы две соседних области всегда были разного цвета?

объявили, что они доказали теорему. Потребовалось более 1200 часов на проведение расчетов и было проведено 10 миллиардов элементарных операций на вычислительной машине, чтобы перебрать все возможные варианты для 1478 типов карт. Оглашение этого результата имело эффект разорвавшейся бомбы в математическом сообществе. Можно ли доверять этому новому типу «доказательств»? Можем ли мы принять действительность доказательства такой длины, которое ни один человек

Yosh cheklamasi:
12+
Litresda chiqarilgan sana:
15 may 2018
Tarjima qilingan sana:
2017
Yozilgan sana:
2016
Hajm:
303 Sahifa 122 illyustratsiayalar
ISBN:
978-5-699-97875-5
Matbaachilar:
Mualliflik huquqi egasi:
Эксмо
Формат скачивания:
epub, fb2, fb3, ios.epub, mobi, pdf, txt, zip