Отличная книга для первого знакомства. Автор в начале книги обещает не приводить ни единой математической формулы – вместо них используется код на python, что облегчает восприятие рядовому программисту.
Хорошо «разжёваны» базовые задачи – классификация и регрессия.
Много внимания уделено свёрточным и рекуррентным слоям, а также методам преобразования текста в вид, с которым способны работать модели.
По ходу дела дано множество практических советов, а в отдельном разделе по шагам расписано, как надо обучать модель «правильно».
Но что касается более продвинутых вещей – генерация текста и изображений – сложилось впечатление, что достаточно быстро изложение с «всё разжёвано» превращается в «по вершкам».
По генерации текста пример игрушечный, из которого непонятно, как делать практически полезные модели. По генерации изображений приведены достаточно интересные примеры, но всё очень коротко, а потому далеко не так легко для восприятия, как начало книги.
Думаю, что в этом нет вины автора – видимо задачи посложнее регрессии и классификации требуют более солидной подготовки, иначе объём книги разрастётся в разы (но конечно хотелось бы иметь и такую книгу).
В заключении автор честно рассказывает об ограничениях глубоких сетей – а они существенные, так что рано отправлять на свалку подходы, не связанные с градиентным спуском и непрерывными функциями. В целом автор сбивает спесь, навеянную популярными статьями. Глубокие сети – это мощный инструмент, возможности которого ещё до конца не исследованы. Но известные ограничения не оставляют сомнений в том, что их одних недостаточно для решения всех стоящих проблем.
Izohlar
7