Kitobni o'qish: «Дислипидемии, атеросклероз и их связь с ишемической болезнью сердца и мозга»

Shrift:

Список сокращений

АГ – артериальная гипертензия

АД – артериальное давление

Апо – апопротеин

ВСА – внутренняя сонная артерия

ГКМ – гладкомышечные клетки

ГЛП – гиперлипидемия

ГТГ – гипертриглицеридемия

ГХС – гиперхолестеринемия

ДЛП – дислипидемия

ДЭ – дисциркуляторная энцефалопатия

ИБС – ишемическая болезнь сердца

ИМ – инфаркт миокарда

КИМ – комплекс интима-медиа

ЛП – липопротеин

ЛПВП – липопротеины высокой плотности

ЛПОНП – липопротеины очень низкой плотности

ЛПНП – липопротеины низкой плотности

ЛППП – липопротеины промежуточной плотности

МИ – ишемический мозговой инсульт

МРА – магнитно-резонансная ангиография

МРТ – магнитно-резонансная томография

НМК – нарушение мозгового кровообращения

ОНМК – острое нарушение мозгового кровообращения

ПМА – передняя мозговая артерия

ПЭТ – позитронно-эмиссионная томография

РМК – регионарный мозговой кровоток

СЖК – свободные жирные кислоты

СМА – средняя мозговая артерия

ССЗ – сердечно-сосудистые заболевания

ТИА – транзиторная ишемическая атака

ТГ – триглицериды

ФЛ – фосфолипиды

ФР – факторы риска

ХМ – хиломикроны

ХС – холестерин

ЦВЗ – цереброваскулярное заболевание

Введение

В медицинской литературе можно найти много публикаций по дислипидемиям и атеросклерозу в отдельности, но руководства, где бы эти патологические состояния обсуждались совместно, с клинических позиций кардиолога и ангионевролога, встречаются редко.

Это объясняется тем, что в вопросах дислипидемии хорошо разбираются специалисты-биохимики, тогда как атеросклероз – это проблема патофизиологов и клиницистов.

К тому же атеросклероз – сосудистая патология, поэтому она разветвилась на множество дисциплин. Атеросклерозом сосудов сердца занимаются кардиологи, сосудов мозга – неврологи (ангионеврологи), атеросклерозом аорты, артерий нижних конечностей – сосудистые хирурги. В диагностике атеросклероза большая роль принадлежит врачам-инструменталистам, владеющим методами дуплексного сканирования сосудов, электрокардиографией, рентгенографией (магнитно-резонансной томографией, ангиографией, контрастными методами исследования, позитронно-эмиссионной томографией).

Таким образом, универсальных специалистов по этой проблеме нет. Есть врачи, которые хорошо ориентируются в вопросах атеросклероза того или иного сосудистого региона, но в вопросах биохимии липидов у них чаще всего дилетантские познания. В связи со сказанным становится понятным, что больные атеросклерозом требуют мультидисциплинарного подхода и в большинстве случаев должны курироваться коллегиально, врачами разного профиля.

Автор настоящей книги в силу сложившихся обстоятельств объединил здесь необходимые врачам сведения по липидологии и клиническим проявлениям ИБС и ЦВЗ.

Академик А. Н. Климов, возглавлявший в последней четверти XX века отдел биохимии Института экспериментальной медицины в Ленинграде – Санкт-Петербурге и считавший себя последователем академика Н. Н. Аничкова, организовал в своем отделе лабораторию популяционного изучения атеросклероза, в которой мне довелось работать в качестве кардиолога. Естественно, что в этой лаборатории постоянно проводились клинико-биохимические сопоставления с углубленным анализом липидного спектра крови.

Для выявления скрытых форм ИБС у обследуемых из популяции проводились пробы на тредмиле и велоэргометре со скрупулезным изучением особенностей ЭКГ.

Последующая многолетняя работа в Институте мозга человека РАН заставила столкнуться с больными цереброваскулярным заболеванием (ЦВЗ). И у них на первое место в качестве причины болезни выступали атеросклероз и артериальная гипертензия (АГ). Это означало необходимость вникать в вопросы дуплексного сканирования брахиоцефальных артерий, анализировать результаты магнитно-резонансной ангиографии сосудов мозга, данные позитронно-эмиссионной томографии мозга, не говоря об изучении особенностей липидного состава крови и у этих больных.

Параллельно многие годы нам пришлось заниматься диспансеризацией больных с семейной гиперхолестеринемией совместно с генетиками из Института экспериментальной медицины АМН (М. Ю. Мандельштам и его сотрудники).

Все это позволило приобрести опыт работы, который сочетал в себе отдельные проблемы кардиологии, ангионеврологии, липидологии, генетики, изучить клинико-генетические и клинико-биохимические особенности больных с дислипидемией и атеросклерозом.

Книга иллюстрирована рядом характерных клинических примеров (кратких историй болезни) и наглядными материалами, позволяющими увидеть ту или иную патологию, о которой идет речь.

Данное руководство, несмотря на свою лаконичность, можно считать итогом многолетней работы в области кардиологии и ангионеврологии и постоянных контактов с биохимиками, неврологами и врачами-инструменталистами, работающими в кабинетах ультразвукового сканирования, магнитно-резонансной и позитронно-эмиссионной томографии мозга.

Хотелось бы надеяться, что эта книга окажется полезной врачам разных специальностей, занимающихся больными с нарушенным липидным обменом и атеросклерозом сосудов разной локализации.

Приношу благодарность сотрудникам Института мозга человека РАН (Г. В. Катаева, 3. Л. Бродская, Т. Ю. Скворцова) и Института экспериментальной медицины РАМН (М. Ю. Мандельштам, В. Ф. Трюфанов, Л. Е. Васильева), участвовавшим в нашей повседневной работе, результатом которой явился выход в свет этой книги.

Глава 1. Липиды крови и дислипидемии

1.1. Понятие о липидах, классификация дислипидемий

Липиды – жироподобные соединения – входят в состав плазмы крови; для нормального функционирования они необходимы каждой клетке организма. Понятие «дислипидемия» (ДЛП) появилось в медицинской литературе в последней четверти XX века. До этого времени при описании липидного состава крови чаще всего говорили о «гиперлипидемиях» (ГЛП), т. е. о повышенном содержании холестерина (ХС) или триглицеридов (ТГ). О других отклонениях от нормы в липидном составе крови в то время было мало что известно.

Помимо ХС и ТГ, к липидам относят фосфолипиды (ФЛ) и свободные (неэстерифицированные) жирные кислоты (СЖК).

ХС, ТГ, ФЛ в водной среде, каковой является кровь, нерастворимы. Чтобы циркулировать в составе плазмы (а в этих соединениях почти все клетки постоянно нуждаются), липиды должны были приобрести способность растворяться в водной среде. Это оказалось возможным после объединения ХС, ТГ и ФЛ в комплексы с белками, в результате чего образовались липопротеидные частицы – липопротеины или липопротеиды.

Проще транспортируются СЖК, поскольку они легко объединяются с альбуминами крови и с ними переносятся.

J. Gofman et al. (1949) предложили классификацию липопротеинов в зависимости от их поведения в растворе определенной плотности при ультрацентрифугировании. С этого времени липопротеины (ЛП) стали разделять на классы: хиломикроны (ХМ) – самые большие и наименее плотные частицы, ЛП очень низкой плотности (ЛПОНП), ЛП низкой плотности (ЛПНП), ЛП высокой плотности (ЛПВП). Эти физические свойства ЛП отражают особенности их химической структуры.

ЛП-частица имеет сферическую форму, ее ядро образовано холестерин-эстерами и ТГ, а его окружение составлено из молекул фосфолипидов и свободного ХС. Один конец этих молекул аполярен и обращен к ядру, другой (наружный) конец молекул имеет заряд, так что его сразу окружают полярные молекулы воды, благодаря которым ЛП-частицы приобретают растворимость в водной среде, транспортабельность и способность доставляться к любой клетке.

Приводим схематическое изображение липопротеидной частицы низкой плотности – ЛПНП (рис. 1).


Рис. 1. ЛПНП-частица (липопротеин низкой плотности) с диаметром 225–275 ангстрем


Апо В-100 – белковая частица, показаны также фосфолипиды, триглицериды, холестерин-эстеры и неэстерифицированный холестерин.

Разная плотность ЛП объясняется неодинаковыми соотношениями между содержанием ХС, ТГ и ФЛ в ЛП-частицах, а также количественными и качественными характеристиками входящих в их состав специализированных белков – апопротеинов.

Самые крупные ЛП – хиломикроны с диаметром от 80 до 1000 наномикрон, на 95 процентов состоят из ТГ и обладают самой низкой плотностью, при электрофорезе в полиакриламидном геле они остаются на старте.

ЛПОНП имеют диаметр 30–80 наномикрон и на 60 % состоят из ТГ, содержат до 15 % ХС-эстеров и столько же ФЛ, их апобелки (апоВ, апоС, апоЕ) составляют 5–7 %, причем ключевым белком является апопротеин В-100.

ЛПНП образуются из ЛПОНП под действием ферментов, их диаметр меньше – 20–25 наномикрон, на 40 % они состоят из ХС-эстеров, на 25 % – из апопротеинов, причем их главный апобелок – апопротеин В-100 (составляет 95 %), в малых количествах в ЛПНП присутствуют апопротеины апоС и апоЕ. ЛПНП содержат также некоторое количество свободного ХС и 6 % ТГ. ЛПНП являются основным транспортером ХС из печени на периферию.

Не так давно ЛПНП стали дифференцировать на отдельные субфракции (наиболее атерогенны – мелкие, плотные частицы), то же касается и ЛПОНП [R Krauss, 1995; Ю.И. Рагино, 2004].

ЛПВП характеризуются наименьшим диаметром (13 наномикрон) и на 45 % состоят из белков. Ключевой белок ЛПВП – апопротеин А-I, он составляет 65 %, 20 % апобелков представляют A-II. В состав ЛПВП входит по 20 % ХС-эстеров и ФЛ. Основная функция ЛПВП – доставка ХС с периферии (с поверхности соматических клеток) в печень. В настоящее время различают несколько субфракций ЛПВП (в зависимости от степени их зрелости): ЛПВП-2 а, ЛПВП-2Ь и ЛПВП-3, их функциональные отличия до конца не выяснены.

Важнейшей миссией ЛПВП является не только захват ХС на периферии и перенос его в печень, но и защита ЛПНП от перекисного окисления. Известно, что ЛПНП приобретают атерогенность лишь после своей модификации (перекисного окисления и др. изменений). Эти важнейшие свойства ЛПВП доказаны работами А. Н. Климова и сотрудников и завоевали всеобщее признание. С этого времени за ЛПВП закрепилось определение антиатерогенной фракции липидов.

Необходимо отдельно упомянуть еще об одной – особой фракции ЛП – ЛП (а). В нее входят ЛПНП, в которых апо В-100 соединен дисульфидным мостиком с особым белком – апо (а), гомологичным плазмину [В. Nordesgaard et al., 2011]. Повышенное содержание в плазме крови ЛП (а) ведет к его накоплению в сосудистой стенке и довольно быстро осложняется атеросклерозом.

Необходимо различать первичные и вторичные ГЛП. Что касается вторичных ГЛП, то они носят симптоматический характер и вызваны определенным первоначальным заболеванием. Чаще всего это сахарный диабет, гипотиреоз, хронический нефрозо-нефрит или билиарный цирроз печени. У большинства людей ГЛП можно вызвать искусственно, если в ежедневный рацион включать чрезмерное количество яиц и животных жиров (алиментарная ГЛП). На вторичных ГЛП мы здесь не останавливаемся.

Под первичными ГЛП (ДЛП) подразумеваются генетически обусловленные нарушения липидного состава крови, в генезе которых большую или меньшую роль все же могут играть особенности питания, физического режима, некоторые сопутствующие заболевания.

Классификация ГЛП Фредриксона [D. Fredrickson & R. Lees, 1965] различает 6 типов ГЛП: I тип – гиперхиломикронемия, при которой сыворотка крови приобретает молочно-белый цвет за счет большого количества хиломикронов, содержащих много ТГ (до 800-1000 мг/дл и более). При стоянии пробирки с кровью в холодильнике ХМ всплывают наверх, так что верхнюю треть пробирки образует сливкообразный слой. I тип ГЛП встречается редко, проявляется с раннего детства, сопровождается тяжелыми панкреатитами и гепатолиенальным синдромом.

IIа тип гиперхолестеринемия (ГХС) – характеризуется резко повышенным содержанием ЛПНП, тогда как содержание ТГ остается нормальным; при IIЬ типе (ГХС в сочетании с умеренной гипертри-глицеридемией) наблюдается высокий уровень ХС крови, но при этом повышено содержание не только ХС ЛПНП, но и ХС ЛПОНП.

Отличительной особенностью III типа ГЛП является очень высокий уровень как ХС, так и ТГ, а также наличие бета-фракции ЛПОНП. Эта фракция липопротеинов ведет себя при электрофорезе как ЛПНП, а при ультрацентрифугировании – как ЛПОНП [А. Н. Климов, Н.Г. Никульчева, 1999]. Данный тип ГЛП приводит к распространенному атеросклерозу, поражающему аорту и большинство ее ветвей, так что ему могут быть свойственны аневризма аорты, синдром перемежающейся хромоты, ишемическая болезнь сердца и мозга.

IIа и IIЬ типы ГЛП встречаются у 15–20 % взрослого населения Европы и США, больные с III типом ГЛП попадаются очень редко.

IV тип ГЛП распространен сравнительно широко и в основном проявляется гипертриглицеридемией (значительно повышается уровень ЛПОНП); этот тип ГЛП может осложняться цереброваскулярным заболеванием и/или ишемической болезнью сердца. Очень часто в этих случаях развивается нарушение толерантности к углеводам, а нередко и сахарный диабет 2-го типа.

Изредка можно столкнуться с V типом ГЛП. По составу крови он напоминает I тип ГЛП, но степень ГХМ меньше. Развертывается эта патология лишь к 35–40 годам и тоже характеризуется гепатолиенальным синдромом (хотя и менее выраженным, чем при I типе), панкреатитом, а также нарушением толерантности к глюкозе или сахарным диабетом II типа.

Bepul matn qismi tugad.

Yosh cheklamasi:
0+
Litresda chiqarilgan sana:
29 oktyabr 2012
Yozilgan sana:
2012
Hajm:
123 Sahifa 22 illyustratsiayalar
ISBN:
978-5-9903627-1-0
Mualliflik huquqi egasi:
Эко-Вектор
Yuklab olish formati:
Matn, audio format mavjud
O'rtacha reyting 3,7, 3 ta baholash asosida
Matn, audio format mavjud
O'rtacha reyting 4,6, 24 ta baholash asosida
Matn
O'rtacha reyting 4,6, 7 ta baholash asosida
Matn, audio format mavjud
O'rtacha reyting 3,8, 5 ta baholash asosida
Matn
O'rtacha reyting 4, 4 ta baholash asosida
Matn
O'rtacha reyting 3,7, 3 ta baholash asosida