Kitobni o'qish: «100 великих тайн Земли»

Shrift:

Прошлое и будущее

Глобальная тектоника плит

Шестого января 1912 года на главном собрании Германской геологической ассоциации тридцатиоднолетний Альфред Вегенер прочитал доклад о возникновении океанов и континентов, повергнув в шок ученую публику. Вегенер говорил о том, что континенты не всегда находились там, где мы видим их на карте. Нет, на протяжении всей истории нашей планеты они меняли свое положение.

Коллеги встретили его теорию в штыки. Само представление о том, что части земной коры, включая материки, могут перемещаться по поверхности планеты, казалось им абсурдным. Оно противоречило всему, что было известно тогдашней науке. Прошло почти полвека, прежде чем эта «абсурдная теория» была реабилитирована и легла в основу современной географии. Почему же научный мир так долго отказывал Вегенеру в признании?

Начиная с XVII века ученые пытались объяснить происхождение нашей планеты, а также ее характерного рельефа. Так, знаменитый английский физик Роберт Гук, ревностный соперник Ньютона, обратив внимание на то, что вдали от моря обнаруживают останки морских животных, сделал вывод, что на протяжении земной истории очертания морей и суши неоднократно менялись.

Но к началу ХХ века большинство географов считало, что соотношение морей и континентов оставалось неизменным с древнейших времен. Рельеф планеты менялся только за счет того, что ее недра постепенно остывали и она неравномерно сжималась. Другие полагали, что горы возникают оттого, что накапливаются отложения осадочных пород.

Среди этих дискуссий памятный доклад Вегенера прозвучал подобно взрыву разорвавшейся бомбы. Он говорил о дрейфовавших континентах, разраставшихся морях, о том, что расположенные в глубине Евразии Уральские горы и Гималаи образовались в результате столкновения континентов – одни (Гималаи) сравнительно недавно, другие очень давно.

Альфред Вегенер своей теорией о возникновении океанов и континентов поверг в шок ученую публику


Его не слушали. Его теория убедительно объясняла целый ряд событий в истории нашей планеты, но и впрямь была плохо аргументирована. Вегенер не мог объяснить, какие силы приводят в движение целые континенты.

Важнейший вклад в популяризацию его теории внес британский геолог Артур Холмс. Он предположил, что силой, движущей континенты, могут быть мощные конвективные потоки вещества в недрах Земли. Горячие массы медленно поднимаются из глубины планеты, в то время как более холодные породы постепенно опускаются вглубь.

Еще при жизни Вегенера, в 1925 году, посреди Атлантического океана была обнаружена протяженная горная цепь. Позднее было установлено, что срединно-океанические хребты тянутся по всему земному шару, а в 1953 году американские физики Морис Эвинг и Брюс Хизен открыли, что вдоль подводных хребтов простираются желоба – глубокие разломы в земной коре. Через несколько лет еще один американский ученый, Гарри Хесс, предположил, что система срединных хребтов – это область, где постоянно рождается новая океаническая кора. Сквозь разломы к поверхности устремляется горячая магма, раздвигая лежащие по обе стороны желоба участки морского дна. Так была найдена главная движущая сила глобальной тектоники плит. С середины 1960-х годов гипотеза Вегенера окончательно утвердилась в науке, став основой современной географии.

Как мы теперь знаем, земная кора состоит из семи крупных и целого ряда небольших литосферных плит, охватывающих всю ее поверхность. Они перемещаются, сталкиваются друг с другом, цепляются краями или «подныривают» одна под другую.

При столкновении двух океанических плит или океанической и континентальной образуется зона субдукции. Край одной из плит здесь погружается в глубь Земли и полностью расплавляется уже на глубине около 100 километров, где царят температуры от 1000 до 1500° С. Вдоль края другой плиты образуется цепь вулканических гор. Часто в зонах субдукции пролегают глубоководные желоба. Пример тому – Марианский желоб, возникший при столкновении Филиппинской и Тихоокеанской плит.

При столкновении двух континентальных плит образуются высокие горные системы, например Альпы или Гималаи. Последние возникли при столкновении Индо-Австралийской плиты с Евразийской (оно произошло около 40 миллионов лет назад). Индия и теперь подвигается на север со скоростью 5 сантиметров в год, а потому Гималаи продолжают расти.

Часто плиты не сталкиваются друг с другом в лоб, а скользят рядом, цепляясь краями. Возникающее при этом напряжение разряжается в виде сейсмических ударов, иногда очень мощных. Так, в районе Калифорнии, где Северо-Американская плита скользит вдоль Тихоокеанской, в результате такой сейсмической активности образовался разлом Сан-Андреас.

С появлением глобальной тектоники плит взгляд на эволюцию нашей планеты решительно изменился. Недаром эту теорию ставят в один ряд с учением об эволюции Дарвина и теорией относительности Эйнштейна. Но так ли она совершенна? В последние годы ставший уже классическим взгляд на движение литосферных плит постепенно меняется по мере того, как мы узнаем все новые факты.

Теперь тектоника плит, чем больше мы ее изучаем, представляется нам неким саморегулирующимся механизмом, в работе которого участвуют все системы, составляющие нашу планету.

Известно, например, что горы оказывают очень большое влияние на климат Земли. Но теперь становится ясно, что и климат влияет на тектонические процессы, протекающие в ее недрах. Пример тому – Анды, горная система, возникшая там, где океаническая плита Наска погружается под Южно-Американскую плиту. В южной части Анд климат влажный, что способствует развитию эрозионных процессов. Поэтому в Тихий океан попадает большое количество осадочных отложений. Они смягчают соударение плит. В северной и центральной частях Анд климат сухой. Здесь почти не образуется осадочных отложений, а потому океаническая плита буквально соскребает край континента. Сила трения плит здесь так велика, что расположенная вдоль побережья горная система Анд вздымается все выше. Дождевые тучи все реже перебираются через эту стену, вознесшуюся у них на пути. Как следствие, на западных склонах Анд все реже идут дожди, что лишь ослабляет эрозионные процессы.

Ученые продолжают спорить и о том, по какой причине движутся литосферные плиты. Здесь много неясного, как и во времена Вегенера. Большинство придерживается мнения о том, что главной движущей силой являются медленные конвективные течения, которые возникают благодаря переносу тепла между расплавленным ядром Земли и ее мантией. Однако это плохо согласуется с наблюдаемой нами картиной тектонических движений.

Сторонники другой теории исходят из того, что в недрах планеты имеются два центра конвекции. Главный лежит под Африкой. Другой центр конвекции расположен на противоположной стороне земного шара – под Тихоокеанской плитой, которая постепенно уменьшается в размерах. Возможно, когда-нибудь все нынешние материки сойдутся на территории, занимаемой Тихим океаном, и, как это уже было в истории Земли, образуют суперконтинент, чтобы потом, со временем, когда он разломится на отдельные части, пуститься в обратном направлении. Начнется очередной цикл движения континентов.

Итак, идея Вегенера положила начало грандиозной революции в наших воззрениях на природу Земли. Эта революция не окончилась, она продолжается в тиши научных кабинетов, за экранами компьютеров и в экспедициях, проводимых в «горячих точках планеты» – там, где сталкиваются друг с другом не люди, а глыбы, материки.

Так ли безупречна тектоника плит?

Итак, за последние десятилетия гипотеза Вегенера превратилась во всесильную – и единственно верную – теорию, с помощью которой ученые готовы объяснить любой геологический феномен. В наше время трудно найти какой-либо раздел наук о Земле, в котором не используется тектоника плит. Так ли это необходимо? И все ли ясно с движением плит? Почему все-таки разламываются континенты? Почему литосферные плиты до сих пор не раздавили Африку? Куда исчезает старое океаническое дно? Почему землетрясения иногда происходят посреди литосферных плит? Рассмотрим подробнее некоторые из этих вопросов.

Границы тектонических плит Земли


Через весь Мировой океан тянутся срединно-океанические хребты. Это – швы, скрепляющие литосферу. По классической теории тектоники поток горячих базальтовых пород, изливающихся из недр Земли, поднявшись к ее поверхности, раздвигает океанические литосферные плиты. Затем он растекается по обе стороны шва и застывает. Так разрастается земная кора. Под напором магмы океаническая плита, словно перемещаемая громадным транспортером, надвигается на другую литосферную плиту, движущуюся ей навстречу, например более тяжелую континентальную плиту. В результате их столкновения край океанического дна «подныривает» под эту плиту и погружается в мантию Земли. Эту зону, где край одной литосферной плиты затягивается под другую, называют зоной субдукции. В самой мантии также движется поток вещества. В зоне срединно-океанического хребта он поднимается к поверхности и, изливаясь, раздвигает лежащие над ним плиты. Все повторяется. Потоки вещества непрерывно циркулируют, то исчезая в недрах Земли, то растекаясь по дну океана.

Если эта модель верна, то где-то по обе стороны от каждого подводного хребта должна лежать зона субдукции. Или, иными словами, если здесь земная кора разрастается, то там она должна исчезать. Однако один из континентов – Африка – удивляет ученых. Земная кора вокруг нее лишь разрастается, но никакой зоны субдукции, где лишнее вещество могло бы исчезнуть в недрах Земли, здесь нет. Со всех сторон на Африку надвигаются потоки вещества, поднявшегося наверх. Они все прибывают… Кажется, под их напором громадный материк, в конце концов, сомнется, но этого не происходит. Наоборот, Африка расширяется! Почему?

Может быть, срединно-океанические хребты тоже движутся, постепенно удаляясь от Африки? В таком случае Африканская плита – точнее, подводная ее часть – будет неизменно увеличиваться в размерах. Но если эти хребты движутся, то привычная модель, описывающая поведение вещества в недрах Земли, перестает работать. В настоящее время считается, что под каждым из неподвижных срединно-океанических хребтов сходятся два конвективных кольца, по которым циркулирует разогретое мантийное вещество. Здесь образуется восходящий поток. Он изливается по обе стороны хребта. Такие зоны разрастания земной коры пролегают вдоль Тихого, Атлантического и Индийского океанов. Неужели это не так?

В альтернативной модели имеются лишь два восходящих потока: один по-прежнему располагается под Тихим океаном, другой же торит дорогу наверх под Африканским континентом. С первым из них все ясно, схема его движения осталась той же, что и в классической модели. Поговорим подробнее о другом потоке, который изливается под Африкой. Конечно, пробиться сквозь континентальную толщу он не может. Земная кора ограждает его, как гранитная набережная – реку. Горячее мантийное вещество растекается под земной корой. Наконец, эта «подземная река» достигает океанических хребтов. Здесь она прорывает стеснявшую ее оболочку и просачивается наружу. Продолжив наше сравнение, скажем, что так же река прорывает плотину.

В подобной модели Африка будет лишь расширяться. Однако сейсмические исследования пока не подтверждают этот вывод. Процессы, происходящие в недрах Земли, выглядят гораздо сложнее, нежели в простых, схематичных теориях, четко указывающих, каким частям литосферы в какую сторону следует двигаться. Пока же лишь эмпирические наблюдения убеждают нас в том, что Африке не грозит превратиться в лепешку под напором грозно сомкнувшихся плит. Однако ученые еще не в силах убедительно объяснить, какой же подземной силе приписать ее чудесное спасение.

А вот другая загадка. Глобальная тектоника занимается, прежде всего, краями литосферных плит. Все самое интересное происходит именно там, где одна плита соприкасается с другой: там бушуют вулканы, там громоздятся горные цепи, там землю сотрясают удары стихии, затаившейся в недрах. С помощью тектоники плит легко объяснить все эти феномены. Лишь одно смущает ученых: покоя нет и посреди литосферных плит. Землетрясения, например, наблюдаются даже здесь. Похоже, пресловутые плиты – движущая сила современной геологии – вовсе не являются столь монолитными, как того требует теория. Тут что-то не так.

Остается признать, что структура плит, очевидно, очень сложна. В них имеются ослабленные участки, есть небольшие швы и изломы. Так стоит ли удивляться тому, что плиты сплошь и рядом не выдерживают приходящихся на них нагрузок и «трещат по всем швам».

Естественно, в наше время – время строительства атомных электростанций и грандиозных плотин – ученые и инженеры хотели бы доподлинно знать, насколько слабы те или иные плиты, на которых они собираются возводить свои сооружения. Проще говоря, можно ли считать такой-то район сейсмически опасным? Какова вероятность того, что в ближайшие 100 лет здесь может разразиться землетрясение с магнитудой, равной 7 баллам? Подобное событие будет иметь катастрофические последствия.

Во многих случаях ответить на заданные нами вопросы легко. Возьмем для примера один из самых густонаселенных районов США – Калифорнию. Через весь этот штат, вытянувшись на 1300 километров, пролегает разлом Сан-Андреас. В его окрестностях подземные толчки наблюдаются столь часто, что местные жители готовы к ударам стихии. Они строят здания с учетом сейсмической опасности и принимают другие меры, чтобы уменьшить возможное число жертв.

Итак, люди, живущие вдоль границ литосферных плит, вынуждены все время помнить о грозящем им бедствии. А вот посреди плит мощные землетрясения случаются очень редко – в среднем раз в тысячу лет. Поэтому место, где в следующий раз ударит стихия, неизвестно. Ни одну из подобных катастроф нельзя предсказать, ведь прежде ничего подобного в этом районе не наблюдалось.

Осенью 1993 года неожиданный удар потряс штат Махараштра на западе Индии. Здешние жители не были готовы к этой катастрофе, ведь местность считалась сейсмически безопасной. Однако земля содрогнулась именно здесь, и это событие унесло жизни почти 10 тысяч человек. В 1968 году сразу три сильных землетрясения произошли в Австралии, посреди Индо-Австралийской плиты. К счастью, все они произошли в пустынной местности, где почти не было людей. В начале XIX века неожиданные землетрясения наблюдались в равнинной долине Миссисипи. Множество бревенчатых хижин рассыпалось, не выдержав подземных толчков.

Авторитетные геофизики считают, что нужно составить всемирную карту деформаций литосферных плит. Однако движения, происходящие посреди плит, настолько малы, что их трудно зафиксировать. На эту работу уйдет много лет. Но цель все же оправдывает средства. Благодаря этой карте мы увидим зоны наиболее сильных деформаций. Именно они являются источниками сейсмической опасности.

В поисках древних континентов

Совершим путешествие почти на 2 миллиарда лет в глубь истории нашей планеты. Тогда ее облик был непривычен. Посреди океана, населенного лишь сине-зелеными водорослями и бактериями, лежал один-единственный материк. Он простирался на 12 тысяч километров, достигая в поперечнике 5 тысяч километров. Так предполагает американский геолог Джон Роджерс. По его расчетам, этот суперконтинент появился 1,7 миллиарда лет назад.

Впервые о существовании этого материка заговорил немецкий геолог Ханс Штилле в 1944 году. Позднее стали появляться тому доказательства. Материк даже окрестили Мегагеей. Наконец, в 2002 году Роджерс описал забытый материк, дав ему новое имя, в своей статье «Конфигурация Колумбии, суперконтинента среднего протерозоя».

Облик Колумбии он прихотливо составил из современных континентов и островов. В ту пору западное побережье Индии граничило с западным побережьем Северной Америки; Южная Австралия примыкала к Канаде, а восточное побережье США – к Западной Бразилии. Гренландия оказалась соседкой Сибири, как та же Индия – Антарктиды.

Гипотезу Роджерса подкрепляет и статистика геологов. Около 1,8—1,7 миллиарда лет назад в разных частях света образуются мощные горные цепи. Возможно, они возникают при столкновении отдельных частей суши, сливавшихся в одно целое. Однако суперконтинент оказался неустойчив и начал распадаться на части примерно 1,5 миллиарда лет назад. Это время характеризуется очень интенсивным образованием магматических пород – верный признак того, что земная кора растягивалась и континенты отдалялись друг от друга.

Их последующее местоположение ученые воссоздают, используя метод палеомагнитного анализа. Он помогает понять, где родилась – допустим, возникла из застывающей лавы – та или иная порода. Как известно, минералы, обладающие магнитными свойствами, в момент своего рождения ориентируются вдоль магнитного поля Земли. Лава застынет, пройдут миллионы лет, но эти минералы все так же будут указывать направление магнитного поля в далеком прошлом. А зависит оно от географической широты, ведь на любой широте Земли своя инклинация (магнитное наклонение) – свой определенный угол между вектором напряженности геомагнитного поля и земной поверхностью. Зная возраст минерала, можно определить, на какой широте он находился в то время, когда возник.

Реконструкция Родинии (1,1млрд лет назад)


Впрочем, «магнитный справочник» весьма неполон. В него не вписаны объекты, чей возраст превышает 1,1 миллиарда лет. Почти все более древние породы расплавились и утратили прежние магнитные метки. И все же этот «справочник», запечатленный в камне, – если заглянуть и пролистать его, – помогает понять, как выглядела Земля около миллиарда лет назад. Тогда все части света вновь соединились. Они напоминали россыпь виноградин, повисшую на веточке. Новый суперконтинент назвали Родинией. В этом имени угадывается до боли знакомое русское слово. В самом деле, этот древний континент назван так в честь Родины – может быть, родины жизни.

К моменту возникновения Родинии почти всю нашу планету – от 90 до 95 % ее поверхности – покрывал гигантский океан (сегодня на долю Мирового океана приходится лишь 70 % поверхности Земли). С появлением Родинии разительно изменились и морские течения, и климат. Именно тогда, по предположению американского геолога Эйдриджа Муреса, на Земле впервые установилась смена времен года.

Ввиду изменения климата стало меняться и содержание кислорода в атмосфере. Через 500 миллионов лет это привело к взрывному распространению жизни на нашей планете.

Появление Родинии было отмечено катастрофами. Это виноградинки вырастают бесшумно, а острова или материки, согнанные вместе работой земного «конвейера», что есть силы сшибались. После каждой сшибки на месте недавнего зазора поднимались горы. Остатки той горной цепи протянулись почти по всему востоку США. Здесь древний хребет обрывается, чтобы продолжиться… на востоке Антарктиды и, возможно, в Австралии.

В истории Родинии по-прежнему много неясного. Вопросы вызывает и ее хронология, и расположение в ее составе нынешних континентов. Предложено несколько моделей, реконструирующих ее облик. Наиболее популярные модели носят названия SWEAT (Southwest US – East Antarctica), AUSWUS (Australien – western US) и AUSMEX(Australien – Mexico). Во всех этих моделях основу Родинии составляет древнейший континент Лаврентия. Он охватывал отдельные области современной Гренландии, Северной Америки и Восточной Сибири.

В модели SWEAT к юго-западной оконечности Лаврентии (та находилась примерно там же, где сейчас – Северная Америка) примыкала Антарктида, которая, в свою очередь, соединялась с Австралией. В модели AUSWUS Австралия примыкала к западному побережью Лаврентии, Антарктида опять же соединялась с Австралией, но лежала заметно южнее, а потому не соприкасалась с Лаврентией. Наконец, в модели AUSMEX Австралия лежала далеко к югу от Лаврентии, но все-таки два континента – Австралия и Лаврентия – соприкасались друг с другом на широте современной Мексики.

В 2009 году С. Богданова, С. Писаревский и Чжу Ли раскритиковали все три модели на страницах журнала Stratigraphy and Geological Correlation. По их мнению, с запада к Лаврентии примыкал Южный Китай. Части Южной Америки граничили с восточным побережьем Лаврентии, севернее находилась Балтика. К югу от Лаврентии располагались отдельные области будущей Гондваны, а к северу – Гренландия и Сибирь.

В свою очередь, другие ученые возражают против этой картины. Очевидно, пройдет еще немало времени, прежде чем будет найдена такая конфигурация Родинии, которая удовлетворит всех геологов.

По предположению американского сейсмолога Пола Силвера, с возникновением Родинии тектонические движения плит прекратились. Перестали выбрасывать огненную лаву вулканы. Земная кора стала заметно толще. Это затишье продолжалось около 100 миллионов лет. Потом недра Земли перегрелись настолько, что начались грандиозные вулканические извержения. Это привело к распаду Родинии, и тогда движения литосферных плит возобновились.

Примерно через 150 миллионов лет после своего возникновения Родиния распалась на две части – Северную и Южную Родинию. Вероятно, она была сокрушена мощным потоком магмы, пробившимся из недр Земли.

Вся история континентов на нашей планете – словно покачивание маятника. Взмах влево – материки разбросаны по океанам. Взмах вправо – «камешки» складываются в мозаику, образуя огромный континент. На нашем календаре: 600 миллионов лет до дня сегодняшнего, и маятник повернул в очередной раз. Сформировался еще один суперконтинент – Паннотия. Однако законы глобальной тектоники сокрушили и его.

Следующие названия – Гондвана, Лавразия – уже на слуху и даже на страницах школьных учебников. В конце каменноугольного периода (359—299 миллионов лет назад) два этих материка сблизились вплотную. Возник новый суперконтинент – Пангея. Он протянулся почти на 14 тысяч километров. Почти 100 миллионов лет длилось затишье. Потом Пангея, как подтаявшая льдина, начала трескаться, раскалываться.

Дальнейший дрейф континентов хорошо известен. Возможно, со временем будут подробно изучены и «злоключения» Колумбии. А пока геологи задаются вопросом: «А что было до Колумбии?» Предполагается, что около 3,8 миллиарда лет назад существовала Археогея – «древнейшая Земля»; около 3 миллиардов лет назад – Протогея, «первичная Земля».

26 291,45 s`om
Yosh cheklamasi:
16+
Litresda chiqarilgan sana:
22 fevral 2014
Yozilgan sana:
2013
Hajm:
520 Sahifa 101 illyustratsiayalar
ISBN:
978-5-4444-0495-9
Mualliflik huquqi egasi:
ВЕЧЕ
Yuklab olish formati:
Matn, audio format mavjud
O'rtacha reyting 4,7, 6 ta baholash asosida
Matn, audio format mavjud
O'rtacha reyting 4,5, 6 ta baholash asosida
Matn PDF
O'rtacha reyting 4,4, 8 ta baholash asosida
Matn PDF
O'rtacha reyting 5, 2 ta baholash asosida
Matn
O'rtacha reyting 0, 0 ta baholash asosida