Kitobni o'qish: «Метрология, стандартизация и сертификация: конспект лекций»

Shrift:

ЛЕКЦИЯ № 1. Метрология

1. Предмет и задачи метрологии

С течением мировой истории человеку приходилось измерять различные вещи, взвешивать продукты, отсчитывать время. Для этой цели понадобилось создать целую систему различных измерений, необходимую для вычисления объема, веса, длины, времени и т. п. Данные подобных измерений помогают освоить количественную характеристику окружающего мира. Крайне важна роль подобных измерений при развитии цивилизации. Сегодня никакая отрасль народного хозяйства не могла бы правильно и продуктивно функционировать без применения своей системы измерений. Ведь именно с помощью этих измерений происходит формирование и управление различными технологическими процессами, а также контролирование качества выпускаемой продукции. Подобные измерения нужны для самых различных потребностей в процессе развития научно—технического прогресса: и для учета материальных ресурсов и планирования, и для нужд внутренней и внешней торговли, и для проверки качества выпускаемой продукции, и для повышения уровня защиты труда любого работающего человека. Несмотря на многообразие природных явлений и продуктов материального мира, для их измерения существует такая же многообразная система измерений, основанных на очень существенном моменте – сравнении полученной величины с другой, ей подобной, которая однажды была принята за единицу. При таком подходе физическая величина расценивается как некоторое число принятых для нее единиц, или, говоря иначе, таким образом получается ее значение. Существует наука, систематизирующая и изучающая подобные единицы измерения, – метрология. Как правило, под метрологией подразумевается наука об измерениях, о существующих средствах и методах, помогающих соблюсти принцип их единства, а также о способах достижения требуемой точности.

Происхождение самого термина «метрология» возводя! к двум греческим словам: metron, что переводится как «мера», и logos – «учение». Бурное развитие метрологии пришлось на конец XX в. Оно неразрывно связано с развитием новых технологий. До этого метрология была лишь описательным научным предметом. Следует отметить и особое участие в создании этой дисциплины Д. И. Менделеева, которому подевалось вплотную заниматься метрологией с 1892 по 1907 гг… когда он руководил этой отраслью российской науки. Таким образом, можно сказать, что метрология изучает:

1) методы и средства для учета продукции по следующим показателям: длине, массе, объему, расходу и мощности;

2) измерения физических величин и технических параметров, а также свойств и состава веществ;

3) измерения для контроля и регулирования технологических процессов.

Выделяют несколько основных направлений метрологии:

1) общая теория измерений;

2) системы единиц физических величин;

3) методы и средства измерений;

4) методы определения точности измерений;

5) основы обеспечения единства измерений, а также основы единообразия средств измерения;

6) эталоны и образцовые средства измерений;

7) методы передачи размеров единиц от образцов средств измерения и от эталонов рабочим средствам измерения. Важным понятием в науке метрологии является единство измерений, под которым подразумевают такие измерения при которых итоговые данные получаются в узаконенных единицах, в то время как погрешности данных измерений получены с заданной вероятностью. Необходимость существования единства измерений вызвана возможностью сопоставления результатов различных измерений, которые были проведены в различных районах, в различные временные отрезки, а также с применением разнообразных методов и средств измерения.

Следует различать также объекты метрологии:

1) единицы измерения величин;

2) средства измерений;

3) методики, используемые для выполнения измерений и т. д.

Метрология включает в себя: во—первых, общие правила, нормы и требования, во—вторых, вопросы, нуждающиеся в государственном регламентировании и контроле. И здесь речь идет о:

1) физических величинах, их единицах, а также об их измерениях;

2) принципах и методах измерений и о средствах измерительной техники;

3) погрешностях средств измерений, методах и средствах обработки результатов измерений с целью исключения погрешностей;

4) обеспечении единства измерений, эталонах, образцах;

5) государственной метрологической службе;

6) методике поверочных схем;

7) рабочих средствах измерений.

В связи с этим задачами метрологии становятся: усовершенствование эталонов, разработка новых методов точных измерений, обеспечение единства и необходимой точности измерений.

2. Термины

Очень важным фактором правильного понимания дисциплины и науки метрология служат использующиеся в ней термины и понятия. Надо сказать, что, их правильная формулировка и толкование имеют первостепенное значение, так как восприятие каждого человека индивидуально и многие, даже общепринятые термины, понятия и определения он трактует по—своему, используя свой жизненный опыт и следуя своим инстинктам, своему жизненному кредо. А для метрологии очень важно толковать термины однозначно для всех, поскольку такой подход дает возможность оптимально и целиком понимать какое—либо жизненное явление. Для этого был создан специальный стандарт на терминологию, утвержденный на государственном уровне. Поскольку Россия на сегодняшний момент воспринимает себя частью мировой экономической системы, постоянно идет работа над унификацией терминов и понятий, создается международный стандарт. Это, безусловно, помогает облегчить процесс взаимовыгодного сотрудничества с высокоразвитыми зарубежными странами и партнерами. Итак, в метро логии используются следующие величины и их определения:

1) физическая величина, представляющая собой общее свойство в отношении качества большого количества физических объектов, но индивидуальное для каждого в смысле количественного выражения;

2) единица физической величины, что подразумевает под собой физическую величину, которой по условию присвоено числовое значение, равное единице;

3) измерение физических величин, под которым имеется в виду количественная и качественная оценка физического объекта с помощью средств измерения;

4) средство измерения, представляющее собой техническое средство, имеющее нормированные метрологические характеристики. К ним относятся измерительный прибор, мера, измерительная система, измерительный преобразователь, совокупность измерительных систем;

5) измерительный прибор представляет собой средство измерений, вырабатывающее информационный сигнал в такой форме, которая была бы понятна для непосредственного восприятия наблюдателем;

6) мера – также средство измерений, воспроизводящее физическую величину заданного размера. Например, если прибор аттестован как средство измерений, его шкала с оцифрованными отметками является мерой;

7) измерительная система, воспринимаемая как совокупность средств измерений, которые соединяются друг с другом посредством каналов передачи информации для выполнения одной или нескольких функций;

8) измерительный преобразователь – также средство измерений, которое производит информационный измерительный сигнал в форме, удобной для хранения, просмотра и трансляции по каналам связи, но не доступной для непосредственного восприятия;

9) принцип измерений как совокупность физических явлений, на которых базируются измерения;

10) метод измерений как совокупность приемов и принципов использования технических средств измерений;

11) методика измерений как совокупность методов и правил, разработанных метрологическими научно—исследовательскими организациями, утвержденных в законодательном порядке;

12) погрешность измерений, представляющую собой незначительное различие между истинными значениями физической величины и значениями, полученными в результате измерения;

13) основная единица измерения, понимаемая как единица измерения, имеющая эталон, который официально утвержден;

14) производная единица как единица измерения, связанная с основными единицами на основе математических моделей через энергетические соотношения, не имеющая эталона;

15) эталон, который имеет предназначение для хранения и воспроизведения единицы физической величины, для трансляции ее габаритных параметров нижестоящим по поверочной схеме средствам измерения. Существует понятие «первичный эталон», под которым понимается средство измерений, обладающее наивысшей в стране точностью. Есть понятие «эталон сравнений», трактуемое как средство для связи эталонов межгосударственных служб. И есть понятие «эталон—копия» как средство измерений для передачи размеров единиц образцовым средствам;

16) образцовое средство, под которым понимается средство измерений, предназначенное только для трансляции габаритов единиц рабочим средствам измерений;

17) рабочее средство, понимаемое как «средство измерений для оценки физического явления»;

18) точность измерений, трактуемая как числовое значение физической величины, обратное погрешности, определяет классификацию образцовых средств измерений. По показателю точности измерений средства измерения можно разделить на: наивысшие, высокие, средние, низкие.

3. Классификация измерений

Классификация средств измерений может проводиться по следующим критериям.

1. По характеристике точности измерения делятся на равноточные и неравноточные.

Равноточными измерениями физической величины называется ряд измерений некоторой величины, сделанных при помощи средств измерений (СИ), обладающих одинаковой точностью, в идентичных исходных условиях.

Неравноточными измерениями физической величины называется ряд измерений некоторой величины, сделанных при помощи средств измерения, обладающих разной точностью, и (или) в различных исходных условиях.

2. По количеству измерений измерения делятся на однократные и многократные.

Однократное измерение – это измерение одной величины, сделанное один раз. Однократные измерения на практике имеют большую погрешность, в связи с этим рекомендуется для уменьшения погрешности выполнять минимум три раза измерения такого типа, а в качестве результата брать их среднее арифметическое.

Многократные измерения – это измерение одной или нескольких величин, выполненное четыре и более раз. Многократное измерение представляет собой ряд однократных измерений. Минимальное число измерений, при котором измерение может считаться многократным, – четыре. Результатом многократного измерения является среднее арифметическое результатов всех проведенных измерений. При многократных измерениях снижается погрешность.

3. По типу изменения величины измерения делятся на статические и динамические.

Статические измерения – это измерения постоянной, неизменной физической величины. Примером такой постоянной во времени физической величины может послужить длина земельного участка.

Динамические измерения – это измерения изменяющейся, непостоянной физической величины.

4. По предназначению измерения делятся на технические и метрологические.

Технические измерения – это измерения, выполняемые техническими средствами измерений.

Метрологические измерения – это измерения, выполняемые с использованием эталонов.

5. По способу представления результата измерения делятся на абсолютные и относительные.

Абсолютные измерения – это измерения, которые выполняются посредством прямого, непосредственного измерения основной величины и (или) применения физической константы.

Относительные измерения – это измерения, при которых вычисляется отношение однородных величин, причем числитель является сравниваемой величиной, а знаменатель – базой сравнения (единицей). Результат измерения будет зависеть от того, какая величина принимается за базу сравнения.

6. По методам получения результатов измерения делятся на прямые, косвенные, совокупные и совместные.

Прямые измерения – это измерения, выполняемые при помощи мер, т. е. измеряемая величина сопоставляется непосредственно с ее мерой. Примером прямых измерений является измерение величины угла (мера – транспортир).

Косвенные измерения – это измерения, при которых значение измеряемой величины вычисляется при помощи значений, полученных посредством прямых измерений, и некоторой известной зависимости между данными значениями и измеряемой величиной.

Совокупные измерения – это измерения, результатом которых является решение некоторой системы уравнений, которая составлена из уравнений, полученных вследствие измерения возможных сочетаний измеряемых величин.

Совместные измерения – это измерения, в ходе которых измеряется минимум две неоднородные физические величины с целью установления существующей между ними зависимости.

4. Единицы измерения

В 1960 г. на XI Генеральной конференции по мерам и весам была утверждена Международная система единиц (СИ).

В основе Международной системы единиц лежат семь единиц, охватывающих следующие области науки: механику, электричество, теплоту, оптику, молекулярную физику, термодинамику и химию:

1) единица длины (механика) – метр;

2) единица массы (механика) – килограмм;

3) единица времени (механика) – секунда;

4) единица силы электрического тока (электричество) – ампер;

5) единица термодинамической температуры (теплота) – кельвин;

6) единица силы света (оптика) – кандела;

7) единица количества вещества (молекулярная физика, термодинамика и химия) – моль.

В Международной системе единиц есть дополнительные единицы:

1) единица измерения плоского угла – радиан;

2) единица измерения телесного угла – стерадиан. Таким образом, посредством принятия Международной системы единиц были упорядочены и приведены к одному виду единицы измерения физических величин во всех областях науки и техники, так как все остальные единицы выражаются через семь основных и две дополнительных единицы СИ. Например, количество электричества выражается через секунды и амперы.

5. Основные характеристики измерений

Выделяют следующие основные характеристики измерений:

1) метод, которым проводятся измерения;

2) принцип измерений;

3) погрешность измерений;

4) точность измерений;

5) правильность измерений;

6) достоверность измерений.

Метод измерений – это способ или комплекс способов, посредством которых производится измерение данной величины, т. е. сравнение измеряемой величины с ее мерой согласно принятому принципу измерения.

Существует несколько критериев классификации методов измерений.

1. По способам получения искомого значения измеряемой величины выделяют:

1) прямой метод (осуществляется при помощи прямых, непосредственных измерений);

2) косвенный метод.

2. По приемам измерения выделяют:

1) контактный метод измерения;

2) бесконтактный метод измерения. Контактный метод измерения основан на непосредственном контакте какой—либо части измерительного прибора с измеряемым объектом.

При бесконтактном методе измерения измерительный прибор не контактирует непосредственно с измеряемым объектом.

3. По приемам сравнения величины с ее мерой выделяют:

1) метод непосредственной оценки;

2) метод сравнения с ее единицей.

Метод непосредственной оценки основан на применении измерительного прибора, показывающего значение измеряемой величины.

Метод сравнения с мерой основан на сравнении объекта измерения с его мерой.

Принцип измерений – это некое физическое явление или их комплекс, на которых базируется измерение. Например, измерение температуры основано на явлении расширения жидкости при ее нагревании (ртуть в термометре).

Погрешность измерения – это разность между результатом измерения величины и настоящим (действительным) значением этой величины. Погрешность, как правило, возникает из—за недостаточной точности средств и методов измерения или из—за невозможности обеспечить идентичные условия при многократных наблюдениях.

Точность измерений – это характеристика, выражающая степень соответствия результатов измерения настоящему значению измеряемой величины.

Количественно точность измерений равна величине относительной погрешности в минус первой степени, взятой по модулю.

Правильность измерения – это качественная характеристика измерения, которая определяется тем, насколько близка к нулю величина постоянной или фиксировано изменяющейся при многократных измерениях погрешности (систематическая погрешность). Данная характеристика зависит, как правило, от точности средств измерений.

Основная характеристика измерений – это достоверность измерений.

Достоверность измерений – это характеристика, определяющая степень доверия к полученным результатам измерений. По данной характеристике измерения делятся на достоверные и недостоверные. Достоверность измерений зависит того, известна ли вероятность отклонения результатов измерения от настоящего значения измеряемой величины. Если же достоверность измерений не определена, то результаты таких измерений, как правило, не используются. Достоверность измерений ограничена сверху погрешностью измерений.

Bepul matn qismi tugad.

Janrlar va teglar

Yosh cheklamasi:
0+
Litresda chiqarilgan sana:
23 may 2009
Hajm:
184 Sahifa 8 illyustratsiayalar
ISBN:
978-5-699-22401-2
Mualliflik huquqi egasi:
Научная книга
Формат скачивания:

Ushbu kitob bilan o'qiladi

Muallifning boshqa kitoblari