Hajm 9 sahifalar
2007 yil
Нейро-нечеткий метод построения моделей сложных объектов
Kitob haqida
Существует ряд особенностей, свойственных задачам математического моделирования сложных систем, которые ограничивают использование известных методов. Указанное обстоятельство обусловливает необходимость разработки новых методов и алгоритмов математического моделирования, позволяющих расширить область применения технологий интеллектуального анализа данных.
В статье рассмотрен метод интеллектуального анализа данных, в основе которого лежит идея самоорганизации математических моделей и аппарат гибридных нейронных сетей. Предлагаемый метод позволяет строить модели сложных систем в условиях ограниченности объёма исходных данных с учётом экспертной информации об имеющихся закономерностях и взаимосвязях.
Авторы анализируют особенности задач математического моделирования сложных систем, а также предлагают методику, включающую следующие этапы: формирование обучающих выборок и подготовку структур частных моделей, генерирование частных моделей нейронной сетью, отбор лучших моделей по заданному критерию. Для тестирования разработанной методики был разработан специальный программный комплекс, с помощью которого проводились вычислительные эксперименты. Их результаты свидетельствуют о работоспособности рассмотренного метода и позволяют рекомендовать его для построения математических моделей сложных систем.
Полученные модели в дальнейшем могут использоваться в качестве математического и алгоритмического обеспечения интеллектуальных информационных систем поддержки принятия решений по управлению сложными объектами произвольной природы.
Достаточно четко и понятно изложен оригинальный подход к построению гибридной нейро-нечетких моделей исследования и прогнозирования. Весьма полезная авторская разработка – как в практическом, так и теоретическом плане!!
Izohlar, 1 izoh1