А что, если?..

Matn
19
Izohlar
Parchani o`qish
O`qilgan deb belgilash
Shrift:Aa dan kamroqАа dan ortiq
Еще более отдаленное будущее

Солнце становится все ярче. В течение трех миллиардов лет сложная система обратных связей поддерживала температуру Земли относительно стабильной, пока Солнце понемногу теплело.

Но через миллиард лет эта система даст сбой. Наши океаны, которые вскармливали и охлаждали жизнь, превратятся в ее злейшего врага. Они закипят на горячем солнце, окружат планету толстым слоем водяного пара и усилят парниковый эффект. Через миллиард лет Земля станет второй Венерой.

Нагреваясь еще больше, планета может полностью лишиться воды, и ее атмосфера наполнится каменным паром, поскольку начнет кипеть и испаряться и поверхность суши. Спустя еще несколько миллиардов лет растущее Солнце в конце концов поглотит Землю.

Земля исчезнет, и множество молекул, из которых состояла площадь Таймс-сквер, разлетятся прочь от умирающего Солнца. Эти пылевые облака будут плыть через космос, возможно, рождая по пути новые звезды или планеты.

Если люди к тому времени выберутся за пределы Солнечной системы и переживут Солнце, не исключено, что наши потомки будут жить на одной из этих планет. Атомы Таймс-сквер, пройдя сквозь горнило Солнца, сформируют наши новые тела.


И в один прекрасный день мы все либо вымрем, либо станем ньюйоркцами до мозга костей.

Где моя вторая половинка?

ВОПРОС: А что, если бы у каждого человека на самом деле была лишь одна-единственная «вторая половинка» – некий человек, живущий неизвестно где?

– Бенджамин Стаффин

ОТВЕТ: Это был бы сущий кошмар.

С концепцией единственной второй половинки вообще много проблем. Как поет австралийский комик Тим Минчин,

 
Твоя любовь одна на миллион,
Ее не купишь ни за какую цену,
Но статистика говорит,
Что из оставшихся 999 000
Некоторые точно будут не хуже.
 

Так что, если бы у нас действительно имелась одна-единственная вторая половинка и больше мы ни с кем в мире не были бы счастливы? Удалось бы нам встретить свою половинку?

Предположим, что наша половинка предопределена при рождении. Вы ничего не знаете о том, кто этот человек и где он живет, но любовные романы учат нас, что вы узнаете друг друга, как только встретитесь взглядом.

Сразу возникают некоторые вопросы. Во-первых, жива ли еще ваша вторая половинка? За всю историю человечества на Земле жило около сотни миллиардов людей, но сегодня нас только семь миллиардов (таким образом, человеческая жизнь до сих пор приводила к смерти в 93 % случаев). Иными словами, 93 % вторых половинок уже нет в живых.



Это ужасно! Но погодите, дальше будет только хуже. Простая логика подсказывает, что нельзя ограничиваться только людьми, жившими в прошлом: надо учитывать и неизвестное число людей будущего. Если ваша вторая половинка может жить в прошлом, значит, некоторые половинки могут находиться и в будущем, ведь и вы сами такая «будущая» половинка для кого-то в прошлом.

Теперь давайте предположим, что ваша половинка живет в то же время, что и вы. Предположим также, что вы сверстники в пределах нескольких лет (это более строгое ограничение, чем известное правило «половина вашего возраста плюс семь лет»[14], однако это правило работает, только если половинки встречаются уже взрослыми – скажем, одному 30, а другому 40 лет, и не работает, если бы они встретились лет на 15 лет раньше). С учетом этих ограничений у каждого из нас окажется примерно полмиллиарда потенциальных половинок.



Но как насчет пола и ориентации? Культуры? Языка? Мы можем и дальше использовать демографические категории, чтобы еще более сузить круг потенциальных партнеров, однако при этом мы уходим от идеи случайной половинки. В нашем сценарии вы с вашей половинкой ничего не знаете друг о друге, пока не посмотрите друг другу в глаза. Можно сказать, что ваша ориентация будет определяться исключительно вашей половинкой.

Как видим, шансы столкнуться со своей половинкой весьма малы. Количество незнакомцев, которым мы смотрим в глаза каждый день, варьируется от нуля (если вы отшельник или житель маленького городка) до нескольких тысяч (если вы полицейский на Таймс-сквер), но давайте предположим, что вы встречаетесь взглядом с несколькими десятками незнакомцев в день (я скорее интроверт, поэтому для меня это довольно щедрое предположение). Если 10 % из них примерно ваши сверстники, то всего за всю жизнь вы поймаете взгляд примерно 50 000 людей. С учетом того, что у каждого из нас есть 500 000 000 потенциальных половинок, истинную любовь в течение своей жизни обретет лишь один из 10 000…



Если опасность умереть в одиночестве столь велика, то общество просто обязано придумать способ увеличить вероятность визуального контакта. Например, построить огромные транспортные ленты, чтобы граждане могли перемещаться, глядя в глаза визави… А если того же эффекта можно достичь с помощью веб-камеры, то надо разработать модифицированную версию сайтов для случайных знакомств – таких, например, как Chat Roulette.com.



Если бы каждый из нас использовал эту систему по восемь часов в день семь дней в неделю и если бы нам требовалась бы всего пара секунд, чтобы определить, является ли человек нашей половинкой, то система могла бы теоретически свести всех людей со своими половинками за несколько десятилетий. (Я произвел несколько несложных вычислений, чтобы в целом оценить шансы участников. Если вы хотите рассчитать ваш конкретный случай с помощью математических инструментов, можете начать с задач на перестановку.)

Но в реальной жизни многим людям и без того непросто найти хоть какое-то время для личной жизни, и мало кто смог бы посвятить ее устройству два десятилетия. Так что не исключено, что только детки богатых родителей смогли бы часами сидеть на нашем сайте (назовем его «рулетка-для-половинок-точка-ком»). Но, увы, к несчастью для легендарного «золотого процента» (считается, что богачи составляют 1 % мирового населения), большая часть их половинок входила бы в оставшиеся 99 %… И если лишь один процент от «золотого процента» воспользуется нашей рулеткой, то лишь один процент от процента от процента найдет свою пару – то есть один из 10 000 человек.

Зато у оставшихся 9 999 богачей появился бы стимул втянуть в эту систему больше людей. В результате могли бы возникнуть благотворительные проекты, направленные, например, на то, чтобы у каждого жителя Земли оказался компьютер – нечто среднее между кампанией «Ноутбук каждому ребенку» и усовершенствованным сайтом знакомств. Профессии кассира в супермаркете или патрульного на Таймс-сквер стали бы невероятно престижными, поскольку дают возможность часто встречаться глазами с другими. Люди рвались бы в большие города и на разнообразные тусовки, чтобы найти свою любовь, точно так же, как они это делают и сейчас.

Но даже если бы кто-то из нас провел годы на сайте «рулетка-для-половинок-точка-ком», кто-то нашел работу, где постоянно заглядывал в глаза незнакомцам, а кто-то просто надеялся на удачу, – лишь малая часть всех нас нашла бы свою любовь. Остальным бы не повезло.

В условиях постоянного стресса и давления новой общественной нормы кто-то начал бы притворяться. Всем хочется вступить в клуб счастливых, и двое одиночек могли бы объединиться, чтобы разыграть мнимую встречу двух половинок. Поженившись, они продолжали бы скрывать свою выдумку и старались изобразить счастливейшую пару на глазах у своих друзей и своей семьи.

Мир случайных половинок был бы очень одиноким местом. Давайте надеяться, что наш мир не таков.

Лазерная указка

ВОПРОС: А что, если все люди на Земле одновременно направят на Луну лазерные указки? Изменит ли она свой цвет?

– Питер Липовиц

ОТВЕТ: Нет, если речь идет об обычной указке.

Во-первых, следует учесть, что не все мы видим Луну одновременно. Поскольку примерно 75 % населения Земли живет между нулевым и 120-м меридианом, идеальное положение Луны для нашего эксперимента – где-то над Аравийским морем.

Какую луну выбрать – новую или полную? С одной стороны, луна в новолуние гораздо темнее, и свет наших лазеров было бы проще заметить. Но с другой стороны, такая луна – сложная мишень, поскольку видно ее в основном днем, а значит, результат наших усилий практически не будет виден.

Давайте лучше возьмем фазу четверти луны, чтобы можно было сравнивать эффект наших лазеров на темной и светлой стороне.


Это наша мишень



Обычная красная лазерная указка имеет мощность примерно в 5 милливатт, так что ее свет вполне сможет достичь Луны, хотя и рассеется по достаточно большому участку лунной поверхности. Земная атмосфера немного исказит луч и частично поглотит его, но большая часть света все же достигнет цели.

 

Давайте предположим, что все мы достаточно меткие, чтобы вообще попасть в Луну, но не все попадем в одно и то же место, так свет распределится по поверхности равномерно.

В 00:30 по Гринвичу все прицеливаются и нажимают кнопку!

Вот что произойдет.



Что ж, довольно обидно… Но такого результата и следовало ожидать. Солнце освещает Луну с мощностью, превышающей киловатт на квадратный метр. Поскольку площадь экваториального сечения Луны составляет около 10¹³ м², ее омывает примерно 1016 ватт солнечного света, то есть 10 петаватт, или 2 мегаватта на каждого жителя Земли, что намного превышает мощность наших 5-милливаттных лазерных указок. В каждой части этих расчетов есть некоторые неточности, но в целом соотношение именно таково.



Лазер мощностью в 1 Вт – очень опасная вещь. Он не просто способен ослепить вас, он может обжечь кожу и даже поджечь окружающие предметы. Совершенно логично, что его нет в свободной продаже в США… Шучу-шучу! Есть, конечно, и стоит он всего 300 долларов.

Итак, предположим, мы потратили два миллиарда долларов, чтобы купить каждому жителю Земли зеленый лазер мощностью 1 Вт. (Примечание для кандидатов в президенты – подобный пункт в Вашей программе помог бы Вам получить мой голос.) Этот лазер не просто более мощный, чем лазерная указка, – зеленый цвет находится ближе к середине видимого спектра, поэтому глаза воспринимают его лучше, и он кажется более ярким.

Вот какой будет эффект.



Упс!.. Наши лазерные указки посылают 150 люменов света (больше, чем фонарики), и ширина их луча составляет 5 угловых минут. Такой луч осветит поверхность Луны лишь примерно на ½ люкса (лк) по сравнению с освещенностью в 130 000 лк, которую обеспечивает нашему спутнику Солнце. Даже если все мы прицелимся с идеальной точностью, это даст нам дополнительно всего лишь около 5 лк на примерно 10 % поверхности Луны.

Для сравнения: полная Луна освещает поверхность Земли примерно на 1 лк. Это значит, что действия наших лазеров не видно не только с Земли: даже стоящему на Луне астронавту отсвет земных указок на лунной поверхности показался бы более слабым, чем лунный свет на Земле.



В последнее десятилетие с развитием литиевых батарей и светодиодов появилось очень много самых разнообразных фонарей, но очевидно, что карманный фонарик нам в любом случае не поможет. Так что пропустим все это и выдадим каждому участнику проекта устройство Nightsun.

Название может показаться вам незнакомым, но есть шанс, что вы видели это устройство в действии: так называются прожекторы, которые установлены на вертолетах полиции и береговой охраны. Испуская 50 000 люменов света, они вполне способны превратить ночь в день.

Луч такого устройства имеет угловую ширину несколько градусов, так что нам понадобятся фокусирующие линзы, чтобы сузить его до половины градуса, необходимой, чтобы попасть в Луну.

Вот полученный эффект.



Его почти не видно, но все же прогресс есть! Луч лазера дает освещенность в 20 лк, то есть он ярче, чем темная половина лунного диска. Однако разглядеть это очень сложно, и мы точно не увидим никаких следов луча на светлой половине Луны.



Давайте заменим каждый Nightsun на проектор IMAX – 30 000-ваттную пару ламп с системой водяного охлаждения, которые вместе выдают более миллиона люменов.



И все равно едва заметно… На крыше отеля «Люксор» в Лас-Вегасе стоит самый мощный проектор на Земле. Давайте выдадим такой же каждому участнику нашего эксперимента.

Ах да, и добавим линзы, чтобы весь луч фокусировался именно на Луне.



Наш свет теперь точно виден, так что мы достигли своей цели. Поздравляю команду.



Кхм… Вообще-то Министерство обороны США в свое время проектировало мегаваттные лазеры для уничтожения боеголовок в полете. Таким был Boeing YAL‐1 – химический кислородно-йодный мегаваттный лазер, который устанавливали на самолете Boeing‐747. Это инфракрасный лазер, так что мы не увидим его луча, но давайте вообразим, что существует лазер аналогичной мощности, излучающий свет в рамках видимого спектра.



Наконец-то нам удалось сравняться с яркостью солнечного света! Правда, мы потратили на это пять петаватт энергии, что вдвое больше, чем в среднем тратит человечество за то же самое время.



Ладно, давайте установим по мегаваттному лазеру на каждом квадратном метре территории Азии. Правда, ради поддержания работы 50 миллиардов лазеров придется израсходовать все запасы нефти на Земле примерно за две минуты, зато в течение этих двух минут Луна будет выглядеть так:



Луна будет казаться такой же яркой, как полуденное солнце, и к концу этих двух минут лунная поверхность разогреется настолько, что начнет светиться сама.



Что ж, сделаем еще один уверенный шаг за пределы правдоподобия. Самый мощный лазер на земле находится в National Ignition Facility – лаборатории по исследованию управляемой термоядерной реакции. Это ультрафиолетовый лазер с мощностью 500 тераватт. Он испускает отдельные импульсы продолжительностью по несколько наносекунд, так что энергия одного импульса будет равна энергии, которую можно получить при сжигании примерно четверти стакана бензина.

Представим, что мы каким-то образом нашли способ заставить этот лазер постоянно работать, выдали каждому жителю Земли по экземпляру устройства и одновременно направили бы все эти устройства на Луну.

К сожалению, такой поток энергии обратит атмосферу на пути луча в плазму, которая немедленно подожжет поверхность Земли и убьет нас всех. Но давайте предположим, что этот лазер как-то умудряется проходить через атмосферу Земли, не взаимодействуя с ней.

Но даже при этих условиях, как выясняется, Земля все равно загорится. Свет, отраженный от Луны, будет в 4000 раз ярче света полуденного солнца. В таком сиянии океаны Земли выкипят меньше чем за год.

Но забудем на минуту о Земле. А что же будет с Луной?

Давление света ускорит вращение Луны примерно на одну десятимиллионную часть ее гравитационной силы. Это ускорение будет не слишком заметно в краткосрочной перспективе, но со временем его хватит, чтобы Луна переместилась на более высокую орбиту вокруг Земли…

…Но если бы давление света было бы единственным фактором, который повлияет на Луну!

Сорока мегаджоулей энергии достаточно, чтобы испарить килограмм скальной породы. Если предположить, что лунная порода имеет среднюю плотность 3 кг/л, то лазеры дадут достаточно энергии, чтобы поверхность нашего спутника начала испаряться и на ней образовался бы кратер, глубина которого будет увеличиваться со скоростью четыре метра в секунду:



Однако в реальности лунная порода будет испаряться не так быстро по очень важной причине: испарившийся камень не исчезает в небытии. Поверхность Луны превратится в плазму, и эта плазма перекроет путь лучу. Наш лазер будет вливать все больше энергии в плазму, нагревая ее все больше и больше. Частицы плазмы будут сталкиваться, отскакивать друг от друга, врезаться в поверхность Луны и в конце концов с потрясающей скоростью вылетят в космос.

Этот поток вещества по сути превратит всю поверхность Луны в ракетный двигатель, причем на удивление эффективный. Использование лазеров с целью удаления материала с поверхности называется лазерной абляцией, и этот метод весьма перспективен с точки зрения перемещения космических кораблей.

Луна огромна, но каменная плазма начнет медленно и неуклонно отталкивать ее от Земли (этот выброс также отдраит дочиста поверхность Земли и уничтожит в том числе и все лазеры, но мы пока притворяемся, что нам ничего не грозит). Одновременно плазма будет уничтожать и лунную поверхность, и это сложное взаимодействие нелегко смоделировать.



Но если предположить, что частицы плазмы отлетают от Луны со скоростью 500 км/с, потребуется несколько месяцев, чтобы Луна вышла за пределы действия наших лазеров. Наш спутник сохранит большую часть своей массы, но выйдет за пределы гравитации Земли и перейдет на асимметричную орбиту вокруг Солнца.

Технически Луна не станет новой планетой, если брать определение Международного астрономического союза. Поскольку ее новая орбита будет пересекаться с земной, она будет считаться карликовой планетой, как Плутон. Пересечение орбит Луны и Земли вызовет периодические непредсказуемые колебания. В конце концов Луна может упасть на Солнце, вылететь за пределы Солнечной системы или врезаться в одну из планет – весьма вероятно, нашу.


Вот что я называю настоящей мощностью!

Периодическая стена элементов

ВОПРОС: А что, если построить Периодическую таблицу Менделеева из кубиков, сделанных из соответствующих элементов?

– Энди Коннолли

ОТВЕТ: Есть люди, которые коллекционируют химические элементы. Они пытаются собрать как можно больше физических образцов и раскладывают их в ящички, составленные в виде таблицы Менделеева.

Из 118 элементов таблицы три десятка – такие как гелий, углерод, алюминий, железо или серу – можно купить в чистом виде в магазинах. Еще несколько десятков можно раздобыть, разломав какой-нибудь прибор (например, образец америция можно найти в детекторе дыма). Еще что-то можно заказать в интернете.

В общем и целом вам, возможно, удастся собрать примерно 80 элементов или 90, если вы готовы немножко рискнуть своим здоровьем, безопасностью и репутацией законопослушного гражданина. Остальные слишком радиоактивны или недолговечны, чтобы можно было собрать в одном месте за один раз больше нескольких атомов.

А что, если вам это все же удалось бы?

В Периодической таблице Менделеева 7 рядов.[15]



Верхние два ряда составить легко.

Третий мог бы сильно обжечь вас.

Четвертый убил бы токсичным дымом.

Пятый сделал бы все то же самое плюс облучил бы вас небольшой дозой радиации.

Шестой с грохотом взорвался бы, превратив все вокруг в облако радиоактивного и ядовитого огня и пыли.

А вот строить седьмой ряд я бы вообще не рекомендовал.


Начнем сверху. Первый ряд простой, хотя и скучный.



Кубик водорода поднялся бы кверху и растаял, как воздушный шарик без оболочки. То же случилось бы с гелием.



Второй ряд уже сложнее.


Кубик лития немедленно потемнел бы на воздухе. Бериллий довольно токсичен, так что с ним надо обращаться осторожно и стараться, чтобы его пыль не попала в воздух.

 

Кубики кислорода и азота будут медленно таять в воздухе, постепенно исчезая[16]. Неон также уплывет прочь.

Бледно-желтый кубик фтора немедленно стек бы на пол. Надо учесть, что фтор – самый активный окислитель во всей таблице. Почти любое вещество немедленно загорится, соприкоснувшись с ним.

Я спросил специалиста по органической химии Дерека Лоу[17], что он думает по этому поводу. Дерек сказал, что фтор не будет реагировать с неоном и у него установится что-то вроде вооруженного перемирия с хлором, но все остальное?.. Пуфф! Фтор будет создавать проблемы и встречаясь с элементами из нижних рядов в таблице, а вступая в контакт с любой жидкостью, образовывал бы чрезвычайно едкую фторную кислоту.

Если вы вдохнете даже следовое количество фтора, это сильно повредит или полностью уничтожит ваш нос, ваши легкие, рот, глаза и, в конечном итоге, все ваше тело. При работе с фтором вам точно потребовался бы противогаз. Но помните, что фтор разъедает многие материалы, из которых делают противогазы, так что последний лучше сначала протестировать. В общем, удачи и вперед, к третьему ряду!



Больше всего неприятностей в третьем ряду следует ожидать от фосфора. Чистый фосфор может иметь несколько форм. Красный фосфор более или менее безопасен. Белый вспыхивает при контакте с воздухом и горит жарким пламенем, которое трудно погасить. Вдобавок ко всему белый фосфор довольно ядовит.[18]

Сера в обычных обстоятельствах не представляет проблемы, разве что неприятно пахнет. Однако тут у нас сера зажата между горящим фосфором (слева) и фтором с хлором (справа). При контакте с газообразным фтором сера, как и многие вещества, начинает гореть.

Инертный аргон тяжелее воздуха, так что он просто растекся бы по земле. Но не будем волноваться по поводу аргона, у нас сейчас есть проблемы посерьезнее.

Горение приведет к появлению разнообразных кошмарных химических соединений с названиями наподобие гексафторид серы. Если вы строите нашу стену в замкнутом помещении, то, скорее всего, уже задохнулись от ядовитого дыма, а ваш дом, возможно, сгорел до основания.

И это всего лишь третий ряд. Так вперед же, к четвертому!



Мышьяк – это звучит страшно. И страх этот вполне обоснован. Мышьяк токсичен практически для всех сложных форм жизни. Иногда подобная паника по поводу химических веществ со страшными названиями не обоснована: в нашей еде и воде присутствуют следовые количества мышьяка, и мы с ними отлично справляемся. Но сейчас не тот случай.

Горящий фосфор (к которому теперь присоединился горящий калий, который также склонен к спонтанному самовозгоранию) может поджечь мышьяк, высвободив большое количество триоксида мышьяка. Это довольно ядовитая штука. Не советую ее вдыхать.

Весь этот ряд тоже неважно пахнет. Селен и бром будут яростно вступать в реакции, и Лоу сказал мне, что по сравнению с запахом горящего селена запах серы – «это как духи от Шанель».

Если алюминий переживет этот пожар, с ним произойдет странная вещь. Плавящийся на один ряд ниже галлий потечет на алюминий, нарушив его структуру и сделав его непрочным и мягким, как мокрая бумага.[19]

Горящая сера прольется на бром. При комнатной температуре этот элемент представляет собой жидкость, и это его свойство разделяет только еще одно простое вещество – ртуть. И то, и другое – довольно противные штуки. Разброс токсических веществ, возникших к этому моменту в результате горения, уже неисчислимо велик. Однако если вы наблюдаете опыт с безопасного расстояния, у вас есть шансы выжить.



В пятом ряду есть кое-что интересное – технеций‐99, наш первый радиоактивный кирпичик.

Технеций – самый легкий элемент из тех, что не имеют стабильных изотопов, и он практически не встречается в природе. Его название и говорит о том, что он был получен искусственно. Доза радиации, которую излучает куб из технеция объемом в один литр, не будет смертельной, если просто вставить его в нашу периодическую стену, но все же она весьма значительна. Если вы проведете весь день, надев на голову полый куб из технеция или вдыхая технециевую пыль, этот элемент вполне может вас убить.

Если не считать технеция, пятый ряд будет во многом похож на четвертый.



Вперед, к шестому ряду! Как бы осторожны вы ни были до сих пор, шестой ряд точно вас убьет.


Примечание редакции: нам пришлось разрезать таблицу, чтобы можно было хоть что-то рассмотреть. Простите нас, Дмитрий Иванович!







Этот вариант Периодической таблицы несколько больше, чем тот, к которому вы, вероятно, привыкли, так как мы добавили лантаноиды и актиноиды в 6 и 7-й ряды. (Обычно эти элементы показывают отдельно от общей таблицы, чтобы не делать ее слишком широкой.)


Шестой ряд Периодической таблицы содержит несколько радиоактивных элементов, включая прометий, полоний, астат и радон. Астат – самый проблемный элемент этого ряда. Мы даже не знаем, как он выглядит, поскольку, по словам Лоу, «эта штука просто отказывается существовать». Астат настолько радиоактивен (его период полураспада измеряется часами), что любой крупный кусок астата быстро испарился бы от производимого им самим жара. Химики подозревают, что у этого куска была бы черная поверхность, но на самом деле этого никто не знает.

Для работы с астатом не существует инструкций по безопасности. Но если бы они существовали, там было бы снова и снова запекшейся кровью нацарапано одно только слово «НЕТ!»

Наш куб недолгое время содержал бы больше астата, чем было синтезировано за всю историю химии. Я говорю «недолго», потому что он немедленно превратился бы в столб раскаленного газа. От одного только жара все находящиеся рядом получили бы ожоги третьей степени, а здание, в котором вы все это проделываете, было бы полностью уничтожено. Облако горячего газа быстро поднялось бы в небо, излучая жар и радиацию.

Сила взрыва была бы как раз такой, чтобы привлечь к вашей лаборатории внимание максимального количества проверяющих. Будь взрыв чуть слабее, вам бы, возможно, удалось его скрыть. Будь он сильнее – и в городе не осталось бы ни одного чиновника, которому можно было бы сдать заполненные документы.

Пыль и обломки, покрытые астатом, полонием и другими радиоактивными элементами, посыпались бы из ядерного облака, сделав окружающие кварталы абсолютно непригодными для обитания.

Уровень радиации был бы крайне высоким. Как известно, для того чтобы один раз моргнуть, требуется несколько сотен миллисекунд, поэтому вы получили бы летальную дозу радиации, в буквальном смысле не успев моргнуть глазом.

Такую причину смерти называют «крайне острым радиоактивным отравлением», то есть вы бы попросту сварились.

Но седьмой ряд был бы еще хуже!


В самом низу таблицы есть некоторое количество странных элементов, которые называют трансурановыми. Долгое время у них были «имена-болванки» вроде «унунуний» и все в таком роде, но постепенно они получают настоящие названия.


Примечание редакции: мы снова сделали это!





Однако торопиться тут не стоит, потому что большая часть этих элементов настолько нестабильна, что их можно получить только в ускорителе частиц и они не могут существовать дольше нескольких минут. Если бы у вас вдруг оказалось 100 000 атомов ливермория (116-й элемент), спустя секунду остался бы один, и он тоже исчез бы через несколько сотен миллисекунд.

Но как это ни печально для нашего проекта, трансурановые элементы не уходят тихо и незаметно. Они исчезают в ходе радиоактивного распада. И большая их часть распадается на составляющие, которые, в свою очередь, тоже распадаются. Кубик любого элемента с достаточно большим порядковым номером распался бы за секунды, высвободив при этом огромное количество энергии.

Результат был бы не просто похож на ядерный взрыв – собственно, это и был бы ядерный взрыв. Однако, в отличие от бомбы, в нашем случае мы имели бы дело не с цепной, а с обычной реакцией. Все произошло бы мгновенно.



Поток высвободившейся энергии немедленно превратил бы вас и всю остальную таблицу в плазму. Происходящее напоминало бы взрыв ядерного заряда средней мощности, однако радиоактивное заражение было бы гораздо, гораздо хуже – на землю выпал бы настоящий салат из всего содержимого Периодической таблицы, и при этом элементы с невероятной скоростью превращались бы один в другой.

Грибовидное облако поднялось бы над городом. Верхушка его под действием собственного жара достигла бы стратосферы. Если ваша лаборатория находится в густонаселенной зоне, то число жертв в первые же секунды после взрыва было бы колоссальным, однако долговременные последствия в результате заражения оказались бы еще хуже.

Причем это было бы не какое-то там заурядное, обыденное радиоактивное заражение[20], нет, это было бы похоже на ядерную бомбу, которая продолжает и продолжает взрываться. Обломки, излучающие больше радиации, чем вся чернобыльская катастрофа, покрыли бы весь земной шар. Целые регионы были бы уничтожены, и их дезактивация заняла бы столетия.

В общем, собирать коллекцию, безусловно, очень весело, но когда речь заходит о химических элементах, не пытайтесь собрать их все.


  См. http://xkcd.com/314.
15К тому моменту, как вы это читаете, могли добавить и восьмой ряд. А если вы читаете это в 2038 году, то в таблице уже наверняка 10 рядов, но любое ее обсуждение запрещено роботами, захватившими нашу планету!
16При условии, что все они находятся в двухатомной форме, т. е. О2, N 2. Если кубик состоит из отдельных атомов, они немедленно объединятся, разогревшись при этом до нескольких тысяч градусов.
17Дерек ведет прекрасный химический блог In the Pipeline.
18Именно из-за этих его свойств белый фосфор используют в печально известных зажигательных бомбах и снарядах.
19Поищите на YouТube по словам gallium infiltration, чтобы увидеть, насколько это странное зрелище.
20В этом случае мы еще могли бы пожать плечами и выкинуть его из головы.