bepul

The Way To Geometry

Matn
Muallif:
0
Izohlar
O`qilgan deb belgilash
Shrift:Aa dan kamroqАа dan ortiq

The fifth Booke, of Ramus his Geometry, which is of Lines and Angles in a plaine Surface

1. A lineate is either a Surface or a Body.

Lineatum, (or Lineamentum) a magnitude made of lines, as was defined at 1. e. iij. is here divided into two kindes: which is easily conceived out of the said definition there, in which a line is excluded, and a Surface & a body are comprehended. And from hence arose the division of the arte Metriall into Geometry, of a surface, and Stereometry, of a body, after which maner Plato in his vij. booke of his Common-wealth, and Aristotle in the 7. chapter of the first booke of his Posteriorums, doe distinguish betweene Geometry and Stereometry: And yet the name of Geometry is used to signifie the whole arte of measuring in generall.

2. A Surface is a lineate only broade. 5. d j.


As here aeio. and uysr. The definition of a Surface doth comprehend the distance or dimension of a line, to witt Length: But it addeth another distance, that is Breadth. Therefore a Surface is defined by some, as Proclus saith, to be a magnitude of two dimensions. But two doe not so specially and so properly define it. Therefore a Surface is better defined, to bee a magnitude onely long and broad. Such, saith Apollonius, are the shadowes upon the earth, which doe farre and wide cover the ground and champion fields, and doe not enter into the earth, nor have any manner of thicknesse at all.

Epiphania, the Greeke word, which importeth onely the outter appearance of a thing, is here more significant, because of a Magnitude there is nothing visible or to bee seene, but the surface.

3. The bound of a surface is a line. 6. d j.

The matter in Plaines is manifest. For a three cornered surface is bounded with 3. lines: A foure cornered surface, with foure lines, and so forth: A Circle is bounded with one line. But in a Sphearicall surface the matter is not so plaine: For it being whole, seemeth not to be bounded with a line. Yet if the manner of making of a Sphearicall surface, by the conversiō or turning about of a semiperiphery, the beginning of it, as also the end, shalbe a line, to wit a semiperiphery: And as a point doth not only actu, or indeede bound and end a line: But is potentia, or in power, the middest of it: So also a line boundeth a Surface actu, and an innumerable company of lines may be taken or supposed to be throughout the whole surface. A Surface therefore is made by the motion of a line, as a Line was made by the motion of a point.

4. A Surface is either Plaine or Bowed.

The difference of a Surface, doth answer to the difference of a Line, in straightnesse and obliquity or crookednesse.

Obliquum, oblique, there signified crooked; Not right or straight: Here, uneven or bowed, either upward or downeward. Sn.



5. A plaine surface is a surface, which lyeth equally betweene his bounds, out of the 7. d j.

As here thou seest in aeio. That therefore a Right line doth looke two contrary waies, a Plaine surface doth looke all about every way, that a plaine surface should, of all surfaces within the same bounds, be the shortest: And that the middest thereof should hinder the sight of the extreames. Lastly, it is equall to the dimension betweene the lines: It may also by one right line every way applyed be tryed, as Proclus at this place doth intimate.

Planum, a Plaine, is taken and used for a plaine surface: as before Rotundum, a Round, was used for a round figure.

Therefore,

6. From a point unto a point we may, in a plaine surface, draw a right line, 1 and 2. post. j.

Three things are from the former ground begg'd: The first is of a Right line. A right line and a periphery were in the ij. booke defined: But the fabricke or making of them both, is here said to bee properly in a plaine.



The fabricke or construction of a right line is the 1. petition. And justly is it required that it may bee done onely upon a plaine: For in any other surface it were in vaine to aske it. For neither may wee possibly in a sphericall betweene two points draw a right line: Neither may wee possibly in a Conicall and Cylindraceall betweene any two points assigned draw a right line. For from the toppe unto the base that in these is only possible: And then is it the bounde of the plaine which cutteth the Cone and Cylinder. Therefore, as I said, of a right plaine it may onely justly bee demanded: That from any point assigned, unto any point assigned, a right line may be drawne, as here from a unto e.

Now the Geometricall instrument for the drawing of a right plaine is called Amussis, & by Petolemey, in the 2. chapter of his first booke of his Musicke, Regula, a Rular, such as heere thou seest.



And from a point unto a point is this justly demanded to be done, not unto points; For neither doe all points fall in a right line: But many doe fall out to be in a crooked line. And in a Spheare, a Cone & Cylinder, a Ruler may be applyed, but it must be a sphearicall, Conicall, or Cylindraceall. But by the example of a right line doth Vitellio, 2 p j. demaund that betweene two lines a surface may be extended: And so may it seeme in the Elements, of many figures both plaine and solids, by Euclide to be demanded; That a figure may be described, at the 7. and 8. e ij. Item that a figure may be made vp, at the 8. 14. 16. 23. 28. p. vj. which are of Plaines. Item at the 25. 31. 33. 34. 36. 49. p. xj. which are of Solids. Yet notwithstanding a plaine surface, and a plaine body doe measure their rectitude by a right line, so that jus postulandi, this right of begging to have a thing granted may seeme primarily to bee in a right plaine line.

Now the Continuation of a right line is nothing else, but the drawing out farther of a line now drawne, and that from a point unto a point, as we may continue the right line ae. unto i. wherefore the first and second Petitions of Euclide do agree in one.

And


7. To set at a point assigned a Right line equall to another right line given: And from a greater, to cut off a part equall to a lesser. 2. and 3. p j.

As let the Right line given be ae. And to i. a point assigned, grant that io. equall to the same ae. may bee set. Item, in the second example, let ae. bee greater then io. And let there be cut off from the same ae. by applying of a rular made equall to io. the lesser, portion au. as here. For if any man shall thinke that this ought only to be don in the minde, hee also, as it were, beares a ruler in his minde, that he may doe it by the helpe of the ruler. Neither is the fabricke in deede, or making of one right equal to another: And the cutting off from greater Right line, a portion equall to a lesser, any whit harder, then it was, having a point and a distance given, to describe a circle: Then having a Triangle, Parallelogramme, and semicircle given, to describe or make a Cone, Cylinder, and spheare, all which notwithstanding Euclide did account as principles.

Therefore,

8. One right line, or two cutting one another, are in the same plaine, out of the 1. and 2. p xj.

One Right line may bee the common section of two plaines: yet all or the whole in the same plaine is one: And all the whole is in the same other: And so the whole is the same plaine. Two Right lines cutting one another, may bee in two plaines cutting one of another; But then a plaine may be drawne by them: Therefore both of them shall be in the same plaine. And this plaine is geometrically to be conceived: Because the same plaine is not alwaies made the ground whereupon one oblique line, or two cutting one another are drawne, when a periphery is in a sphearicall: Neither may all peripheries cutting one another be possibly in one plaine.

And

9. With a right line given to describe a peripherie.



This fabricke or construction is taken out of the 3. Petition which is thus. Having a center and a distance given to describe, make, or draw a circle. But here the terme or end of a circle is onely sought, which is better drawne out of the definition of a periphery, at the 10. e ij. And in a plaine onely may that conversion or turning about of a right line bee made: Not in a sphearicall, not in a Conicall, not in a Cylindraceall, except it be in top, where notwithstanding a periphery may bee described. Therefore before (to witt at the said 10. e ij.) was taught the generall fabricke or making of a Periphery: Here we are informed how to discribe a Plaine periphery, as here.

Now as the Rular was the instrument invented and used for the drawing of a right line: so also may the same Rular, used after another manner, be the instrument to describe or draw a periphery withall. And indeed such is that instrument used by the Coopers (and other like artists) for the rounding of their bottomes of their tubs, heads of barrells and otherlike vessells: But the Compasses, whether straight shanked or bow-legg'd, such as here thou seest, it skilleth not, are for al purposes and practises, in this case the best and readiest. And in deed the Compasses, of all geometricall instruments, are the most excellent, and by whose help famous Geometers have taught: That all the problems of geometry may bee wrought and performed: And there is a booke extant, set out by John Baptist, an Italian, teaching, How by one opening of the Compasses all the problems of Euclide may be resolved: And Jeronymus Cardanus, a famous Mathematician, in the 15. booke of his Subtilties, writeth, that there was by the helpe of the Compasses a demonstration of all things demonstrated by Euclide, found out by him and one Ferrarius.

 


Talus, the nephew of Dædalus by his sister, is said in the viij. booke of Ovids Metamorphosis, to have beene the inventour of this instrument: For there he thus writeth of him and this matter:—Et ex uno duo ferrea brachia nodo: Iunxit, ut æquali spatio distantibus ipsis: Altera pars staret, pars altera duceret orbem.

Therfore

10. The raies of the same, or of an equall periphery, are equall.

The reason is, because the same right line is every where converted or turned about. But here by the Ray of the periphery, must bee understood the Ray the figure contained within the periphery.



11. If two equall peripheries, from the ends of equall shankes of an assigned rectilineall angle, doe meete before it, a right line drawne from the meeting of them unto the toppe or point of the angle, shall cut it into two equall parts. 9. p j.

Hitherto we have spoken of plaine lines: Their affection followeth, and first in the Bisection or dividing of an Angle into two equall parts.

Let the right lined Angle to bee divided into two equall parts bee eai. whose equall shankes let them be ae. and ai. (or if they be unequall, let them be made equall, by the 7 e.) Then two equall peripheries from the ends e and i. meet before the Angle in o. Lastly, draw a line from o. unto a. I say the angle given is divided into two equall parts. For by drawing the right lines oe. and oi. the angles oae. and oai. equicrurall, by the grant, and by their common side ao. are equall in base eo. and io. by the 10 e (Because they are the raies of equall peripheries.) Therefore by the 7. e iij. the angles oae. and oai. are equall: And therefore the Angle eai. is equally divided into two parts.

12. If two equall peripheries from the ends of a right line given, doe meete on each side of the same, a right line drawne from those meetings, shall divide the right line given into two equall parts. 10. p j.



Let the right line given bee ae. And let two equall peripheries from the ends a. and e. meete in i. and o. Then from those meetings let the right line io. be drawne. I say, That ae. is divided into two equall parts, by the said line thus drawne. For by drawing the raies of the equall peripheries ia. and ie. the said io. doth cut the angle aie. into two equall parts, by the 11. e. Therefore the angles aiu. and uie. being equall and equicrurall (seeing the shankes are the raies of equall peripheries, by the grant.) have equall bases au. and ue. by the 7. e iij. Wherefore seeing the parts au. and ue. are equall, ae. the assigned right line is divided into two equall portions.




13. If a right line doe stand perpendicular upon another right line, it maketh on each side right angles: And contrary wise.

A right line standeth upon a right line, which cutteth, and is not cut againe. And the Angles on each side, are they which the falling line maketh with that underneath it, as is manifest out of Proclus, at the 15. pj. of Euclide; As here ae. the line cut: and io. the insisting line, let them be perpendicular; The angles on each side, to witt aio. and eio. shall bee right angles, by the 13. e iij.

The Rular, for the making of straight lines on a plaine, was the first Geometricall instrument: The Compasses, for the describing of a Circle, was the second: The Norma or Square for the true erecting of a right line in the same plaine upon another right line, and then of a surface and body, upon a surface or body, is the third. The figure therefore is thus.

Now Perpendiculū, an instrument with a line & a plummet of leade appendant upon it, used of Architects, Carpenters, and Masons, is meerely physicall: because heavie things naturally by their weight are in straight lines carried perpendicularly downeward. This instrument is of two sorts: The first, which they call a Plumbe-rule, is for the trying of an erect perpendicular, as whether a columne, pillar, or any other kinde of building bee right, that is plumbe unto the plaine of the horizont & doth not leane or reele any way. The second is for the trying or examining of a plaine or floore, whether it doe lye parallell to the horizont or not. Therefore when the line from the right angle, doth fall upon the middle of the base; it shall shew that the length is equally poysed. The Latines call it Libra, or Libella, a ballance: of the Italians Livello, and vel Archipendolo, Achildulo: of the French, Nivelle, or Niueau: of us a Levill.


Therefore



14. If a right line do stand upon a right line, it maketh the angles on each side equall to two right angles: and contrariwise out of the 13. and 14. p j.

For two such angles doe occupy or fill the same place that two right angles doe: Therefore they are equall to them by the 11. e j. If the insisting line be perpendicular unto that underneath it, it then shall make 2. right angles, by the 13. e. If it bee not perpendicular, & do make two oblique angles, as here aio. and oie. are yet shall they occupy the same place that two right angles doe: And therefore they are equall to two right angles, by the same.

The converse is forced by an argument ab impossibli, or ab absurdo, from the absurdity which otherwise would follow of it: For the part must otherwise needes bee equall to the whole. Let therefore the insisting or standing line which maketh two angles aeo. and aeu. on each side equall to two right angles, be ae. I say that oe. and ei. are but one right line. Otherwise let oe. bee continued unto u. by the 6. e. Now by the 14. e. or next former element, aeo. & aeu. are equall to two right angles; To which also oea. & aei. are equall by the grant: Let aeo. the common angle be taken away: then shall there be left aeu. equall to aei. the part to the whole, which is absurd and impossible. Herehence is it certaine that the two right lines oe, and ei, are in deede but one continuall right line.

And


15. If two right lines doe cut one another, they doe make the angles at the top equall and all equall to foure right angles. 15. p j.

Anguli ad verticem, Angles at the top or head, are called Verticall angles which have their toppes meeting in the same point. The Demonstration is: Because the lines cutting one another, are either perpendiculars, and then all right angles are equall as heere: Or else they are oblique, and then also are the verticalls equall, as are aui, and oue: And againe, auo, and iue. Now aui, and oue, are equall, because by the 14. e. with auo, the common angle, they are equall to two right angles: And therefore they are equall betweene themselves. Wherefore auo, the said common angle beeing taken away, they are equall one to another.

And

16. If two right lines cut with one right line, doe make the inner angles on the same side greater then two right angles, those on the other side against them shall be lesser then two right angles.

As here, if auy, and uyi, bee greater then two right angles euy, and uyo, shall bee lesser then two right angles.



17. If from a point assigned of an infinite right line given, two equall parts be on each side cut off: and then from the points of those sections two equall circles doe meete, a right line drawne from their meeting unto the point assigned, shall bee perpendicular unto the line given. 11. p j.



As let a, be the point assigned of the infinite line given: and from that on each side, by the 7. e. cut off equall portions ae, and ai, Then let two equall peripheries from the points e, and i, meete, as in o, I say that a right line drawne from o, the point of the meeting of the peripheries. unto a. the point given, shalbe perpendicular upon the line given. For drawing the right lines oe, & oi, the two angles eao, and iao, on each side, equicrurall by the construction of equall segments on each side, and oa, the common side, are equall in base by the 9. e. And therefore the angles themselves shall be equall, by the 7. e iij. and therefore againe, seeing that ao, doth lie equall betweene the parts ea, and ia, it is by the 13. e ij. perpendicular upon it.

18. If a part of an infinite right line, bee by a periphery for a point given without, cut off a right line from the said point, cutting in two the said part, shall bee perpendicular upon the line given. 12. p j.



Of an infinite right line given, let the part cut off by a periphery of an externall center be ae: And then let io, cut the said part into two parts by the 12. e. I say that io is perpendicular unto the said infinite right line. For it standeth upright, and maketh aoi, and eoi, equall angles, for the same cause, whereby the next former perpendicular was demonstrated.

19. If two right lines drawne at length in the same plaine doe never meete, they are parallells. è 35. d j.



Thus much of the Perpendicularity of plaine right lines: Parallelissmus, or their parallell equality doth follow. Euclid did justly require these lines so drawne to be granted paralels: for then shall they be alwayes equally distant, as here ae. and io.

 

Therefore

20. If an infinite right line doe cut one of the infinite right parallell lines, it shall also cut the other.

As in the same example uy. cutting ae. it shall also cut io. Otherwise, if it should not cut it, it should be parallell unto it, by the 18 e. And that against the grant.

21. If right lines cut with a right line be pararellells, they doe make the inner angles on the same side equall to two right angles: And also the alterne angles equall betweene themselves: And the outter, to the inner opposite to it: And contrariwise, 29, 28, 27. p 1.



The paralillesme, or parallell-equality of right lines cut with a right line, concludeth a threefold equality of angles: And the same is againe of each of them concluded. Therefore in this one element there are sixe things taught; all which are manifest if a perpendicular, doe fall upon two parallell lines. The first sort of angles are in their owne words plainely enough expressed. But the word Alternum, alterne [or alternate, H.] here, as Proclus saith, signifieth situation, which in Arithmeticke signified proportion, when the antecedent was compared to the consequent; notwithstanding the metaphor answereth fitly. For as an acute angle is unto his successively following obtuse; So on the other part is the acute unto his successively following obtuse: Therefore alternly, As the acute unto the acute: so is the obtuse, unto the obtuse. But the outter and inner are opposite, of the which the one is without the parallels; the other is within on the same part not successively; but upon the same right line the third from the outer.

The cause of this threefold propriety is from the perpendicular or plumb-line, which falling upon the parallells breedeth and discovereth all this variety: As here they are right angles which are the inner on the same part or side: Item, the alterne angles: Item the inner and the outter: And therefore they are equall, both, I meane, the two inner to two right angles: and the alterne angles between themselvs: And the outter to the inner opposite to it.

If so be that the cutting line be oblique, that is, fall not upon them plumbe or perpendicularly, the same shall on the contrary befall the parallels. For by that same obliquation or slanting, the right lines remaining and the angles unaltered, in like manner both one of the inner, to wit, euy, is made obtuse, the other, to wit, uyo, is made acute: And the alterne angles are made acute and obtuse: As also the outter and inner opposite are likewise made acute and obtuse.

If any man shall notwithstanding say, That the inner angles are unequall to two right angles: By the same argument may he say (saith Ptolome in Proclus) That on each side they be both greater than two right angles, and also lesser: As in the parallel right lines ae and io, cut with the right line uy, if thou shalt say that auy and iyu, are greater then two right angles, the angles on the other side, by the 16 e, shall be lesser then two right angles, which selfesame notwithstanding are also, by the gainesayers graunt, greater then two right angles, which is impossible.



The same impossibility shall be concluded, if they shall be sayd, to be lesser than two right angles.

The second and third parts may be concluded out of the first. The second is thus: Twise two angles are equall to two right angles oyu, and euy, by the former part: Item, auy, and euy, by the 14 e. Therefore they are equall betweene themselves. Now from the equall, Take away euy, the common angle, And the remainders, the alterne angles, at u, and y shall be least equall.

The third is thus: The angles euy, and oys, are equall to the same uyi, by the second propriety, and by the 15 e. Therefore they are equall betweene themselves.

The converse of the first is here also the more manifest by that light of the common perpendicular, And if any man shall thinke, That although the two inner angles be equall to two right angles, yet the right may meete, as if those equall angles were right angles, as here; it must needes be that two right lines divided by a common perpendicular, should both leane, the one this way, the other that way, or at least one of them, contrary to the 13 e ij.



If they be oblique angles, as here, the lines one slanting or obliquely crossing one another, the angles on one side will grow lesse, on the other side greater. Therefore they would not be equall to two right angles, against the graunt.

From hence the second and third parts may be concluded. The second is thus: The alterne angles at u and y, are equall to the foresayd inner angles, by the 14 e: Because both of them are equall to the two right angles: And so by the first part the second is concluded.

The third is therefore by the second demonstrated, because the outter oys, is equall to the verticall or opposite angle at the top, by the 15 e. Therefore seeing the outter and inner opposite are equall, the alterne also are equall.

Wherefore as Parallelismus, parallell-equality argueth a three-fold equality of angles: So the threefold equality of angles doth argue the same parallel-equality.

Therefore,

22. If right lines knit together with a right line, doe make the inner angles on the same side lesser than two right Angles, they being on that side drawne out at length, will meete.



As here ae, and io, knit together with eo, doe make two angles aeo, and ioe, lesser than two right angles: They shall therefore, I say, meete if they be continued out that wayward. The assumption and complexion is out of the 21 e, of right lines in the same plaine. If right lines cut with a right line be parallels, they doe make the inner angles on the same part equall to two right-angles. Therefore if they doe not make them equall, but lesser, they shall not be parallel, but shall meete.

And

23. A right line knitting together parallell right lines, is in the same plaine with them. 7 p xj.



As here uy, knitting or joyning together the two parallels ae, and io, is in the same plaine with them as is manifest by the 8 e.

And


24. If a right line from a point given doe with a right line given make an angle, the other shanke of the angle equalled and alterne to the angle made, shall be parallell unto the assigned right line. 31 p j.

As let the assigned right line be ae: And the point given, let it be i. From which the right line, making with the assigned ae, the angle, ioe, let it be io: To the which at i, let the alterne angle oiu, be made equall: The right line ui, which is the other shanke, is parallel to the assigned ae.

An angle, I confesse, may bee made equall by the first propriety: And so indeed commonly the Architects and Carpenters doe make it, by erecting of a perpendicular. It may also againe in like manner be made by the outter angle: Any man may at his pleasure use which hee shall thinke good: But that here taught we take to be the best.

And


25. The angles of shanks alternly parallell, are equall. Or Thus, The angles whose alternate feete are parallells, are equall. H.

This consectary is drawne out of the third property of the 21 e. The thing manifest in the example following, by drawing out, or continuing the other shanke of the inner angle. But Lazarus Schonerus it seemeth doth thinke the adverbe alterne, (alternely or alternately) to be more then needeth: And therefore he delivereth it thus: The angles of parallel shankes are equall.

And

26. If parallels doe bound parallels, the opposite lines are equall è 34 p. j. Or thus: If parallels doe inclose parallels, the opposite parallels are equall. H.



Otherwise they should not be parallell. This is understood by the perpendiculars, knitting them together, which by the definition are equall betweene two parallells: And if of perpendiculars they bee made oblique, they shall notwithstanding remaine equall, onely the corners will be changed.

And

27. If right lines doe joyntly bound on the same side equall and parallell lines, they are also equall and parallell.




This element might have beene concluded out of the next precedent: But it may also be learned out of those which went before. As let ae, and io, equall parallels be bounded joyntly of ai, and eo: and let ei be drawn. Here because the right line ei falleth upon the parallels ae, and io, the alterne angles aei and eio, are equall, by the 21 e. And they are equall in shankes ae, and io, by the grants, and ei, is the common shanke: Therefore they are also equall in base ai, and eo, by the 7 e iij. This is the first: Then by 21 e, the alterne angles eia, and ieo, are equall betweene themselves: And those are made by ai and eo, cut by the right line ei: Therefore they are parallell; which was the second.

On the same part or side it is sayd, least any man might understand right lines knit together by opposite bounds as here.

28. If right lines be cut joyntly by many parallell right lines, the segments betweene those lines shall bee proportionall one to another, out of the 2 p vj and 17 p xj.



Thus much of the Perpendicle, and parallell equality of plaine right lines: Their Proportion is the last thing to be considered of them.

The truth of this element dependeth upon the nature of the parallells: And that throughout all kindes of equality and inequality, both greater and lesser. For if the lines thus cut be perpendiculars, the portions intercepted betweene the two parallels shall be equall: for common perpendiculars doe make parallell equality, as before hath beene taught, and here thou seest.

If the lines cut be not parallels, but doe leane one toward another, the portions cut or intercepted betweene them will not be equall, yet shall they be proportionall one to another. And looke how much greater the line thus cut is: so much greater shall the intersegments or portions intercepted be. And contrariwise, Looke how much lesse: so much lesser shall they be.



The third parallell in the toppe is not expressed, yet must it be understood.

This element is very fruitfull: For from hence doe arise and issue, First the manner of cutting a line according to any rate or proportion assigned: And then the invention or way to finde out both the third and fourth proportionalls.

29. If a right line making an angle with another right line, be cut according to any reason [or proportion] assigned, parallels drawne from the ends of the segments, unto the end of the sayd right line given and unto some contingent point in the same, shall cut the line given according to the reason given.

Schoner hath altered this Consectary, and delivereth it thus: If a right line making an angle with a right line given, and knit unto it with a base, be cut according to any rate assigned, a parallell to the base from the ends of the segments, shall cut the line given according to the rate assigned. 9 and 10 p vj.



Punctum contingens, A contingent point, that is falling or lighting in some place at al adventurs, not given or assigned.

This is a marvelous generall consectary, serving indifferently for any manner of section of a right line, whether it be to be cut into two parts, or three parts, or into as many parts, as you shall thinke good, or generally after what manner of way soever thou shalt command or desire a line to be cut or divided.

Let the assigned Right line to be cut into two equall parts be ae. And the right line making an angle with it, let it be the infinite right line ai. Let ao, one portion thereof be cut off. And then by the 7 e, let oi, another part thereof be taken equall to it. And lastly, by the 24 e, draw parallels from the points i, and o, unto e, the end of the line given, and to u; a contingent point therein. Now the third parallell is understood by the point a, neither is it necessary that it should be expressed. Therefore the line ae, by the 28, is cut into two equall portions: And as ao, is to oi: So is au, to ue. But ao, and oi, are halfe parts. Therefore au, and ue, are also halfe parts.