Мозг. Как он устроен и что с ним делать

Matn
15
Izohlar
Parchani o`qish
O`qilgan deb belgilash
Shrift:Aa dan kamroqАа dan ortiq

Зачем мозг отгораживается от всего организма

Помимо проводящих возбуждение синапсов, клетки нервной системы формируют структуру мозга с помощью других типов контактов. Для соединения друг с другом они используют плотные контакты, названные так из-за близкого прилегания клеток друг к другу в этом месте. По строению они схожи с электрическими синапсами.

В области плотного контакта мембраны нейронов находятся на расстоянии 3–5 нм. Это создает барьер для проникновения больших молекул. Таким образом, клетки химически изолированы друг от друга. Через такие контакты нервный импульс не передается.

В 1885 году немецкий врач Пауль Эрлих ввел краситель в кровь крысы и обнаружил, что все внутренние органы окрасились, а мозг нет.

Его ученик Эдвин Голдман провел похожий эксперимент, однако он ввел краситель непосредственно в спинномозговой канал. В результате мозг окрасился в синий цвет и весь краситель оставался в нем. При этом остальные органы не окрасились.

На основе полученных данных Голдман предположил, что между мозгом и кровью (омывающей все органы) существует барьер – своего рода стена. Получалось, что мозг, словно иноземец, отгораживался от остального организма. Но зачем?

В 1898 году врачи-исследователи Артур Бдиль и Рудольф Краус показали, что при введении желчных кислот в кровеносное русло опасных последствий для мозга не возникало. Но прямая инъекция в ткань мозга вызывала кому. Иными словами, токсический эффект.

В 1921 году швейцарская и советская исследовательница Лина Штерн в сообщении женевскому медицинскому обществу писала:

Между кровью с одной стороны и спинномозговой жидкостью с другой есть особый аппарат, или механизм, способный просеивать вещества, обыкновенно присутствующие в крови или случайно проникшие в нее. Мы предлагаем называть этот гипотетический механизм, пропускающий одни вещества и замедляющий или останавливающий проникновение других веществ, гематоэнцефалическим барьером.

Термин «гематоэнцефалический барьер» (ГЭБ) вошел в научный обиход. Но долгое время многие особенности функционирования ГЭБ оставались неясны. Ученые и врачи до второй половины XX века и не подозревали, сколько хлопот он доставит современной терапии заболеваний мозга, хотя и осознавали физиологическое значение барьера. Им оставалось лишь ждать новых методов исследований.

Впоследствии выяснилось, что в организации ГЭБ активное участие принимают вспомогательные клетки мозга. Их называют глиальными. Они не могут передавать нервный импульс и вместо этого служат помощниками для нейронов, доставляя питательные вещества, нейромедиаторы, удаляя метаболиты.

Кто в мозге охраняет границы?

Давайте разберемся, из чего складывается барьер и почему с ним столько хлопот у медиков XXI века.

Рис. 9. Схематическое изображение ГЭБ (поперечный срез сосуда)


ГЭБ преимущественно складывается из клеток эндотелия (выстилающих кровеносные сосуды), перицитов (клетки соединительной ткани) и астроцитов (вспомогательные глиальные клетки).

Многим из нас кажется, что кровеносные сосуды похожи на колбы. Мы все хорошо знаем, что у большинства известных нам жидкостей нет ни малейшего шанса просочиться через стекло, ведь оно непроницаемо для влаги. Даже в школьном кабинете химии все мерные сосуды стеклянные. Мы не берем в расчет специфические кислоты, такие как плавиковая, которая представляет собой соединение фтора и водорода (HF). (Это крайне агрессивная жидкость, способная при некоторых условиях разъедать даже стекло; хоть она и не входит в разряд сильных кислот, эта кислота очень токсична для человека.) Ее можно отнести к экзотическим исключениям.

Итак, с колбами мы разобрались. А что же с сосудами?

Методами электронной микроскопии удалось обнаружить промежутки и даже настоящие щели (до 1000 нм) в сосудах большинства тканей. Вспомните, для сравнения, в химическом синапсе щель около 40 нм. И туда еще помещаются рецепторы и нейромедиаторы! А тут целых 1000 нм! Через эти щели во многих органах циркулирует вода с растворенными в ней соединениями.


Рис. 10. Схематическое изображение ГЭБ (продольный срез сосуда)


В сосудах мозга же никаких промежутков нет (ни больших ни малых). Все запаяно и состыковано, молекула к молекуле. И тут как раз срабатывает эффект стеклянной колбы.

Такая стыковка осуществляется за счет плотных контактов. Белки, словно плотными шелковыми нитями, сшивают мембраны соседних клеток.

Клетки астроциты держатся от сосуда чуть в стороне, оставляя небольшой просвет (около 20 нм). Из-за многочисленных отростков астроциты похожи на малюсенькие звездочки. На концах отростков находятся пластинчатые расширения, которыми они и обхватывают сосуд (оставляя, как уже было упомянуто, небольшой зазор).

Эти пластинчатые расширения подгоняются друг к другу так, чтобы образовывалась единая, опоясывающая кровеносный сосуд структура. Отростки астроцитов можно сравнить с присосками. Эти ножки с присосками вытягивают из крови нужные нейронам питательные компоненты. Сама нервная клетка не может активно питаться. Ее кормят астроциты.

Таким образом, у нас возникает труба в трубе с зазором – своеобразный трехслойный барьер. Можно подумать, что он ничего не пропускает. Но на самом деле ГЭБ свободно пропускает некоторые относительно некрупные молекулы (воды, мочевины, глицерина, кофеина, ряда аминокислот и других веществ). Они проходят через плотные контакты между клетками эндотелия.

Получается, наша колба, хоть и «спаяна» без промежутков, имеет свои особенности. Она создана бабулей-природой, чтобы пропускать только нужное.

Это связано с тем, что мембраны клеток состоят не из оксида кремния, как стекло, а из гораздо более крупных органических молекул (между ними, кстати, тоже есть небольшие зазоры). Мембраны могут избирательно погружать в себя ряд веществ. Так некоторые молекулы и транспортируются мембраной.

Существует еще несколько вариантов переноса веществ (все мы подробно рассматривать не будем, чтобы не перегружать материал терминологией). Например, активный транспорт осуществляется за счет специфических белков-транспортеров. Они связываются с веществом и протаскивают его через мембрану. Как видите, самостоятельно вещество проникнуть из сосуда (или обратно) не может. Только связавшись со специальным белком. Белок-транспортер можно сравнить с ключником или сторожем.

И вся эта замысловатая система работает, чтобы отгородить мозг от патогенов и токсинов. Да-да, именно от них. Вообще, мозг – настоящий эгоист: сам отгородился, а другие пусть мучаются (в других-то органах просветы в сосудах есть)!

Лишь небольшая часть бактерий способна обходить ГЭБ (например, менингококки, пневмококки, кишечные палочки). И, к сожалению, все они так или иначе могут вызвать энцефалит (воспаление ткани мозга) и менингит (воспаление оболочек, окружающих мозг).

И тут мы подходим к другой важной проблеме: как бороться с уже проникшими в мозг опасными микроорганизмами? Ведь ГЭБ задерживает и многие лекарства!


Бич современной нейрофармакологии

Лекарственная терапия требуется при многих заболеваниях мозга, в том числе когда человек подхватил инфекцию, распространившуюся в мозговой ткани. И в рамках этой терапии должны использоваться препараты не только эффективные, но и способные пробиться через «вредный» барьер. Все это, естественно, значительно увеличивает их стоимость.

Ученым приходится изобретать хитроумные способы обхода ГЭБ. Чтобы пересечь барьер, вещество должно либо не превышать массу 500 кДа[1], либо иметь возможность подключиться к естественным механизмам (например, к белкам-транспортерам).

98 % современных препаратов не удовлетворяют этим требованиям, соответственно, они не в состоянии оказывать лечебное воздействие в мозге. Непростая задачка для ученых?

Интересно, что большинство антидепрессивных, антипсихотических и снотворных средств проходят ГЭБ. Именно с этим связаны успехи фармакологической терапии психических нарушений (на счастье психотерапевтам).

Но ученые – люди упрямые и изобретательные, так что им удалось найти несколько хоть и изощренных, но достаточно эффективных способов преодолеть ГЭБ. Для этого используют микроскопические газовые пузырьки. Они попадают в мозг с помощью соляного раствора, а затем, благодаря ультразвуку, их приводят в состояние вибрирующего движения. Это позволяет им пересечь ГЭБ.

Другой вариант транспорта лекарственных средств через ГЭБ называют троянским конем (да, термин происходит от названия знаменитого мифического деревянного коня, созданного греками во время Троянской войны): лекарственный препарат маскируют присоединенным к нему белком-транспортером и спокойно переправляют через ГЭБ. Сторож-ключник сам открывает нам ворота.


Нанотехнологии обыгрывают ГЭБ

В последние годы ведутся разговоры о создании липосом со специальными наночастицами. Липосомы – это полые сферы, оболочка которых состоит из жироподобных соединений, очень схожих с естественной мембраной живых клеток. Липосомы способны сливаться с мембраной клетки (поскольку они схожи по структуре) и впрыскивать наночастицы прямо внутрь нее. Также клетка может просто поглощать некоторые липосомы. В любом случае – ГЭБ преодолевается.

 

Предполагают, что наночастицы (размером до 100 нм) могут оказаться весьма эффективными в борьбе с некоторыми видами рака мозга.

На сегодняшний день описанные технологии являются экспериментальными. Вполне вероятно, что лет через десять они получат широкое распространение.


А если ГЭБ, наоборот, ослаблен или поврежден?

Вообще, ГЭБ нужен нам не только для того, чтобы защитить мозг от микроорганизмов и токсинов. В кровеносном русле могут циркулировать нейромедиаторы. Так вот, они ни в коем случае не должны проникать в нервную ткань. В противном случае это приведет к изменению активности нейронов. Представьте себе салют из нейромедиаторного коктейля у вас в голове: искры, молнии, виртуальные взрывы, галлюцинации… Чтобы такого не случилось – работает ГЭБ.

В норме ГЭБ не пропускает лейкоциты (иммунные клетки) и эритроциты. У больных рассеянным склерозом проницаемость ГЭБ для клеток иммунной системы увеличена. По этой причине иммунные клетки (Т-лимфоциты) мигрируют из сосудов вглубь мозговой ткани. В результате в тканях мозга увеличивается количество молекул, вызывающих воспаление. А дальше начинается самое страшное: к процессу подключаются другие иммунные клетки – В-лимфоциты. Они секретируют молекулы против миелиновых оболочек.

Это приводит к тому, что со временем изоляционная капсула разрушается и передача импульсов замедляется (а то и вовсе приостанавливается). У человека постепенно «выпадают» умственные функции: ухудшается память, появляется забывчивость, рассеянность. Если затронуты проводящие пути двигательной системы, у пациента может парализовать конечности. В конечном счете заболевание зачастую приводит к остановке дыхания и смерти.


Как бы драматично это ни звучало, но наш мозг убивает собственная кровь, приносящая с собой иммунные клетки.


Есть и обратные случаи, когда ГЭБ изменяется под воздействием других патологических процессов. Например, при сахарном диабете перестраиваются мембраны клеток эндотелия, являющихся частью ГЭБ. Это приводит к изменению проницаемости барьера.

Как мы видим, с гематоэнцефалическим барьером все очень непросто. С одной стороны, его необходимость бесспорно оправдана, но с другой – иногда его наличие сильно бьет по кошелькам пациентов, вынужденных обращаться к дорогим лекарствам или помощи высоких технологий.

Интересно, что клетки глии выполняют не только барьерную функцию, но также помогают очищать организм от вредных веществ. Сегодня считается, что одна из причин развития болезни Альцгеймера – накопление белковых бляшек. Это такие клубочки, собранные из слипшихся вместе молекул белка бета-амилоида. Они накапливаются в мозге и повреждают нервные клетки.

Белковые молекулы бета-амилоидов – это продукты отходов жизнедеятельности клеток мозга. Ранее предполагалось, что эти вредные белки перерабатываются самими клетками. Но в 2014 году Джефф Айлифф и Рашид Дин представили данные исследований, указывавшие на то, что на самом деле бета-амилоиды вымываются из мозга с помощью клеток глии. Спинномозговая жидкость циркулирует в пространстве между сосудом и клетками, обеспечивающими ГЭБ. Через поры в клетках глии жидкость просачивается в ткани мозга, а затем вымывает оттуда молекулярные отходы.

В ходе экспериментов на мышах удалось выяснить, что во время сна процесс вывода вредных веществ из мозга происходит на 40 % эффективнее. Это стало убедительной демонстрацией пользы сна. А также заставило иначе смотреть как на природу сна, так и на последствия постоянного недосыпания. Фактически, не позволяя себе регулярно высыпаться, мы повышаем риск развития болезни Альцгеймера.

Исследователи из университетов Стони-Брук (Нью-Йорк) и Рочестера (Осло) выяснили, что у животных процесс вывода вредных веществ из мозга эффективнее всего происходит, когда они лежат на боку.

Кстати, при заболеваниях поясничного отдела позвоночника специалисты тоже советуют спать на боку, вытянув одну ногу и согнув в колене другую. Одну руку рекомендуется положить под голову, а вторую – на кровать.

Справедливости ради нужно добавить, что весной 2019 года появились сообщения о том, что препараты, призванные блокировать накопление опасного бета-амилоида, не прошли испытания. Так, в своем обзоре Раймонд Теси ссылается на то, что у 40 % людей с деменцией вообще не было обнаружено накопления опасных бета-амилоидов, и это ставит под сомнение справедливость амилоидной теории. Есть предположение, что болезнь Альцгеймера может быть связана с воспалительными процессами в нервной ткани. Вероятно, мы сейчас стоим на пороге переосмысления причин одной из главных болезней XXI века. Но поскольку эти данные достаточно свежие и нуждаются в перепроверке, я бы не стал списывать со счетов накопленные знания о бета-амилоидах. В любом случае по ночам мозг зачем-то избавляется от них и других метаболитов. Поэтому рекомендация спать регулярно все же пока остается в силе.

Кто нас будит поутру?

Как мы с вами выяснили, мозг отгораживается от крови барьером, защищая свои клетки от вредных веществ. Ранее мы также обнаружили, что мозг состоит из миллиардов нейронов, вокруг которых есть глиальные клетки. Это вспомогательные клетки-обеспечители, их в десятки раз больше, чем нейронов.

А что же с клетками мозга? Как они организованы?

Нервные клетки связываются различными контактами, самые распространенные из них – синапсы. Существуют нейроны, способные синтезировать несколько нейромедиаторов. Они были обнаружены сравнительно недавно. Многие нервные клетки используют в работе лишь один тип молекул-посредников. И эти нейроны так и называют по имени используемого ими нейромедиатора. Если в синапс выбрасывается серотонин, это серотониновый нейрон. Если дофамин – дофаминовый. Далее нейроны объединяют в системы в зависимости от того, какой нейромедиатор они используют.

Вообще, весь мозг можно представить, как обширную сложную сеть из клеток. Все клетки внутри мозга связаны друг с другом за счет синапсов и других контактов. Нейроны, работающие на том или ином нейромедиаторе, являются своего рода подсетью. К примеру, за ожидание награды (заработной платы, выигрыша в лотерею) отвечает дофаминовая система. Ее нейроны представлены в разных структурах мозга. Их всех объединяет один нейромедиатор – дофамин. Сеть серотониновых нейронов выполняет много функций. Она играет главную роль в регуляции настроения. Если нарушен синтез серотонина, у человека может начаться депрессия.

В самом центре ствола мозга (это глубинные структуры, связанные со спинным мозгом) находится удивительная группа клеток под названием «ретикулярная формация».

Она похожа на цепь, пронизывает весь ствол мозга и отсылает возбуждающие сигналы в кору больших полушарий. Другими словами, ретикулярная формация как бы держит кору больших полушарий в тонусе. Она говорит: «Подруга, не спи, будь начеку! Реагируй на стимулы своевременно».

Ретикулярная формация получает информацию от всех органов чувств, мышц, сосудов, оценивает ее, фильтрует и передает в вышележащие центры мозга. Ее функции чрезвычайно обширны. По последним данным, в состав ретикулярной формации входит около 100 различных ядер (функциональных центров, представленных скоплениями тел нервных клеток). Фактически, если происходит серьезное нарушение работы этой структуры, человек оказывается «оторванным» от ощущений. При повреждении ретикулярной формации нарушаются процессы эмоций, силы воли, памяти, внимания и обучения.

На вопрос, кто в мозге будит нас по утрам, ответ будет – ретикулярная формация. Внутри нее кроется спусковой механизм, помогающий нам проснуться, включиться в жизнь, начать что-то делать.

В середине XX века Джузеппе Моруцци и Гораций Мэгун обнаружили, что во время электрической стимуляции ретикулярной формации у животных, находящихся под наркозом, показатели активности мозга сменялись со сна на бодрствование.


Рис. 11. Структуры ретикулярной формации (схема)


Представьте себе такую ситуацию: вы очень утомились после долгого рабочего дня и вам совершенно не хочется ничего делать. Но вдруг звонит человек, которого вы некогда сильно любили, и предлагает встретиться. И внутри вас все как будто оживает, сознание становится ясным. И вот вы уже совершенно бодры и мчитесь на встречу.

Это ретикулярная формация заставила кору проснуться и мобилизовать силы. В свое время нейрохирурги были ошеломлены тем, как просто оказать влияние на ретикулярную формацию и состояние человека. Было установлено, что, если во время операций на мозге сделать разрезы в коре полушарий и даже удалить часть мозговой ткани, пациент не потеряет сознание. Если же скальпель хирурга заденет определенные структуры ретикулярной формации, человек провалится в глубокий сон.

Внутри ретикулярной формации выделяют так называемые ядра шва, нейроны которых работают на серотонине. В ходе некоторых исследований удалось обнаружить, что подавление синтеза серотонина в этих ядрах может вызывать бессонницу.

Таким образом, ретикулярная формация не только поддерживает постоянную умеренную активность коры и всего мозга, но и участвует в регуляции циклов сна и бодрствования. Справедливости ради отмечу, что в этом процессе участвуют и такие структуры, как таламус и гипоталамус, но о них чуть позднее.


Энергетическое сердце нашего мозга

Ретикулярную формацию смело можно назвать энергетическим сердцем нашего мозга. Все восходящие волокна, направленные от органов чувствительности к коре, имеют ответвления, заканчивающиеся на поверхности клеток ретикулярной формации. Из-за такой структуры любые внешние стимулы оказывают на нее возбуждающее действие.

Ретикулярная формация является и своего рода накопителем потенциальной энергии. В ней как бы происходит «зарядка энергетического сердца», что и определяет степень работоспособности коры.

Некоторые специалисты полагают, что ретикулярная формация не позволяет нам долго оставаться спокойными. Она направляет в вышележащие подкорковые структуры и кору мозга накопленную энергию, которая расходуется на конкретные действия: поиск пищи, борьбу за выживание. Но важно понимать, что сегодня человеку не нужно бороться за выживание и постоянно думать о поиске пищи. Нам могут угрожать лишь совершенно случайные факторы. Выходит, что энергия, производимая ретикулярной формацией, не задействована по ее прямому эволюционному назначению и заставляет нас тревожиться на пустом месте. А поводы для переживаний нам подкидывают социальные стереотипы, реклама, неодобрительные слова родителей, критика знакомых.

В связи с этим современному человеку необходимо научиться отделять реальные препятствия и задачи от надуманных. Только так можно направить энергию ретикулярной формации в правильное русло и достичь результата.

Давайте рассмотрим, как это работает, на простом примере. Некоторые люди говорят мне, что боятся заболеть раком. Я у них спрашиваю: а что такое рак? И многие из них даже не знают, что это такое. Они пытаются объяснять, но, как правило, их представления об этом заболевании неверны.

Тогда я спрашиваю: как же вы можете бояться того, чего не знаете? На что они отвечают, что боятся страданий, боятся умереть. Подумайте над этими ответами…

Как вы могли заметить, на самом деле они боятся за свою жизнь, то есть не самого рака, а последствий его возникновения. Хотя при этом даже не очень понимают, как эта болезнь развивается внутри организма.

Итак, мы не можем бояться того, что не можем понять.

Я предлагаю вам сегодня дома или в любом другом комфортном для вас месте спокойно сесть, взять листок бумаги, поделить его пополам и выписать слева ваши реальные страхи, а справа – мнимые. Критерием отбора должна быть ваша способность понять страх.

Приведу еще несколько примеров.

Можете ли вы бояться заразиться столбняком? Ответ – нет. Во-первых, вы никогда его не видели, во-вторых, вы с ним вряд ли сталкивались. А если и сталкивались, то боитесь, вероятно, неприятных ощущений, которые когда-то испытали. В таком случае на самом деле вы боитесь дискомфорта.


Рис. 12. Схематичный вариант визуализации волокон ретикулярной формации (воспроизведенный художником)


А вот если на вас регулярно поднимает руку подвыпивший муж или отец – это реальный страх. Как правило, реальные страхи связаны с воздействием других людей или реальных живых существ. Вы можете бояться, например, укуса агрессивной соседской собаки. Это тоже реальный страх.

Подумайте: страх совершить ошибку является выдуманным или реальным? Мы ведь часто испытываем подобное ощущение.

 

Обсудите получившиеся результаты с вашими друзьями и близкими или с кем-то, кому вы доверяете.

А теперь давайте вновь вернемся к миру нейрофизиологии.

Ретикулярная формация помогает нам заставить себя взяться за дело. Создавая внутри себя правильные мотивации для работы и обучения, мы активируем структуры ретикулярной формации, благодаря чему держим себя в тонусе. Правильно подобранная мотивация позволяет вам расходовать меньше энергии. Мозг начинает выстраивать оптимальные и энергосберегающие механизмы активности. Сама же мотивация тесно связана с нашими эмоциями.

Важно отметить, что в последние годы сканирующие методы исследования продвинулись далеко вперед. В 2018 году в НИИ нейрохирургии имени академика Н. Н. Бурденко впервые на группе здоровых людей была разработана методика визуализации очень тонких пересекающихся волокон сетчатой структуры ретикулярной формации. Эта методика дала врачам мощный инструмент для оценки степени поражения головного мозга. Такие данные позволяют отразить исход восстановления сознания, а также интеллектуальной и эмоциональной сферы человека. Это приближает нас к более персонифицированному уровню диагностики.


Сознание в мозге

Долгое время исследователи искали в мозге тот самый, заветный «центр сознания». В психологии и психофизиологии сознание определяется как наше осознание себя (в конкретный момент времени и/или конкретном месте), а также как способность понимать окружающий мир.

Если совсем просто, есть два смысла, которые приписывают слову «сознание». Во-первых, можно рассматривать его как состояние бодрствования. Считается, что во время сна мы без сознания. Мы говорим: человек был без сознания, а потом пришел в себя.

В статье 2006 года Барбара Джонс указывает, что ретикулярная формация играет одну из ведущих ролей в обеспечении бодрствования благодаря проекционным волокнам, поднимающимся через таламус в кору. Вслед за классиками Моруцци и Мэгуном современные авторы рассматривают ретикулярную формацию как ключевую структуру, обеспечивающую функцию сознания (то есть бодрствования).

Есть сообщения из медицинской практики о том, что стимулирование структуры больших полушарий под названием «ограда» (лат. claustrum) приводит к прекращению мыслительной деятельности и потере сознания (исследование Мохаммеда Кубейси, Университет Вашингтона).

Во-вторых, сознание можно охарактеризовать как результат интегративной функции человека (как комплексное психическое явление). В таком случае сознание – это то, что мы осознаем: то, как мы понимаем жизнь, что думаем о себе и как воспринимаем других людей.

В этом смысле сознанию не может быть отведен какой-то один конкретный участок в мозге. Оно уже будет рассматриваться как совокупная работа многих структур. В рамках умственной деятельности зачастую необходимо оперировать несколькими мысленными объектами одновременно. Такую возможность нам обеспечивает рабочая память, находящаяся в лобных долях мозга. Чтобы прокрутить в своем сознании какие-то эмоциональные переживания, необходимо задействовать целый ряд структур, таких как гиппокамп, амигдала, поясная извилина и другие (об этом подробнее будет рассказано далее).

Согласно теории Фрэнсиса Крика и Кристофа Коха, мозг полностью состоит из нейронных коррелятов – небольших групп нейронов, объединенных на основе структурных и функциональных признаков. Основная задача нейронных коррелятов – обеспечивать направленность процессов внимания. Авторы этой теории полагали, что именно внимание придает целостность человеческому сознанию: оно как бы собирает и объединяет разрозненные процессы в одну картинку, пусть и сложную, но с понятным нам сюжетом.

В основе другой теории, предложенной Джеральдом Эдельманом, лежит предположение, что нейронные сети и группы нервных клеток постоянно перестраиваются для адаптации к изменяющимся условиям. В буквальном смысле меняются конфигурации связей между клетками. Одни могут разбираться, а другие возникать. Таким образом, нейроны мозга постоянно объединяются в группы для эффективной обработки информации. Формируются своеобразные заготовки для реагирования на ту или иную ситуацию.

Некоторые современные авторы полагают, что истина лежит где-то посередине. Нейронные группы действительно могут перестраиваться, но в какой-то момент необходимо координировать их работу. И тут внимание выступает своеобразным организатором, если хотите дирижером всего процесса. По этой причине человеку жизненно необходимы хорошо развитые процессы внимания.

И мы парадоксальным образом вновь упираемся в работу ретикулярной формации. Дело в том, что с точки зрения когнитивной нейрофизиологии, поддерживая кору в тонусе, ретикулярная формация отправляет восходящие потоки внимания. Так что именно ее работа позволяет нам оставаться собранными. То есть на этот раз, говоря о сознании, мы уже имеем в виду психическую деятельность.


Зеркала мозга

В 1990-е годы Джакомо Ризолатти совершенно случайно сделал невероятное открытие, сравнимое по значению с расшифровкой структуры ДНК. Группа исследователей под его руководством изучала особенности физиологии двигательных систем мозга. В премоторные области коры мозга обезьяны вводились электроды, с помощью которых Ризолатти и его коллеги фиксировали активность клеток. Как и полагалось, нейроны включались в работу в тот момент, когда животное совершало какие-то действия.

В один из перерывов в эксперименте обезьяна спокойно сидела с электродами в мозге и ничего не делала, как вдруг исследователи случайно заметили активность нейронов премоторной коры. В этот момент обезьяна с электродами внимательно наблюдала за действиями другой обезьяны. При этом сама она оставалась абсолютно неподвижной! Сначала обнаруженную активность хотели списать на сбои в работе оборудования, но затем перепроверили результаты и выяснили, что это закономерный физиологический процесс.

Так открыли удивительные клетки в мозге, которые активизируются, когда мы следим за действиями других людей. Исследователи записали электроэнцефалограммы (ЭЭГ) в момент совершения обезьяной действия и в момент пассивного наблюдения ею того же действия. Графики оказались практически идентичными!

Обнаруженные клетки назвали зеркальными нейронами. Из экспериментов следовало, что эти клетки, подобно зеркалу, отражают чужое поведение в голове наблюдателя. Это позволяет нам ощущать происходящее с другим человеком так, как если бы мы совершали действия сами. Более поздние эксперименты показали, что благодаря зеркальным нейронам мы можем как бы примерить на себя состояние другого человека (например, просматривая видео с записью процедуры лечения кариеса, мы можем ощутить во рту все то же самое, что и наблюдаемый нами пациент).

Логично предположить, что маркетологи взяли эти знания на вооружение. Реклама с привлечением звезд оказалась действительно эффективной. Желая быть похожими на своих кумиров, люди готовы приобретать вещи, которые они видят в рекламе. Благодаря зеркальным нейронам человек может почувствовать, что он надел часы Бреда Питта или сел в машину Дэвида Бекхэма. Компании и рекламные агентства и до этого обращались к услугам звезд, но с начала 2000-х стали делать это более прицельно.

Интересно, что на рынке можно встретить примеры, когда рекламодатели вводят потребителей в заблуждение. На одной из вывесок Анджелина Джоли «рекламировала» ремонт телефонов с айфоном в руках. Другой баннер, размещенный над входом в парикмахерскую, гласил, что Мила Йовович стрижется здесь. Конечно же, все понимают, что это неправда, однако реклама с участием звезд работает даже в таких случаях.


Рис. 13. Вариант распределения времени задержки взгляда на том или ином участке изображения (выполнено с эффектом тепловизора)


Однако зеркальные нейроны позволили маркетологам не только создать более эффективную рекламу с публичными персонами, но и пересмотреть схему размещения распространяемого товара. В результате исследований выяснилось, что если на рекламном изображении человек держит гамбургер (или другой сэндвич) в правой руке, то это сбивает аудиторию с толку. По статистике около 85 % людей являются правшами. Поэтому, когда они едят гамбургеры, их правая рука, как правило, остается свободной для других действий: картофеля фри, напитка и так далее. Таким образом, гамбургер изображают либо в левой руке, либо в обеих.


«Нейрон бабушки»

Многие испытывают самые теплые чувства при упоминании их бабушки. Бабушки – это такие умудренные опытом, обычно более спокойные и как будто даже более понимающие родители. Если у вас есть (или когда-то была) бабушка, подумайте о ней. Припомните моменты из детства, когда она, быть может, вязала вам носки или пекла пирог. Ее теплые заботливые руки, укутанную в толстые шерстяные платки шею, добродушную улыбку…

Каждый раз, когда мозг видел бабушку, она могла выглядеть иначе, но он всегда знал, что это все та же любимая бабушка. Откуда ему было это известно?

1кДа – килодальтон. Дальтон – атомная единица массы, определяемая как 1/12 массы атома углерода. В данном случае приставка «кило» означает 1 дальтон, умноженный на 1000.