Пациент Разумный. Ловушки «врачебной» диагностики, о которых должен знать каждый

Matn
51
Izohlar
Parchani o`qish
O`qilgan deb belgilash
Пациент Разумный. Ловушки «врачебной» диагностики, о которых должен знать каждый
Audio
Пациент Разумный. Ловушки «врачебной» диагностики, о которых должен знать каждый
Audiokitob
O`qimoqda Воронецкий Станислав
36 494,29 UZS
Batafsilroq
Shrift:Aa dan kamroqАа dan ortiq

Зверские диагносты

Справедливости ради нужно сказать, что медики не всегда прибегают к диагностическим методам, сущность которых до конца изучена. Например, в лабораториях и даже в клинической практике стали все активнее использовать различных животных. Как именно они справляются со своими обязанностями диагностов, неизвестно: говорить лохматые и пернатые помощники не умеют и секретами делиться не торопятся. Тем не менее существуют вполне научные способы проверить, насколько точно и достоверно звери и птицы определяют те или иные заболевания.

Два ключевых показателя для проверки – чувствительность и специфичность.

Чувствительность – доля действительно болеющих людей в обследованной популяции, которые по результатам диагностического теста или методики выявляются как больные. Это мера вероятности того, что любой случай болезни (состояния) будет правильно идентифицирован с помощью теста. В клинике тест с высокой чувствительностью полезен для исключения диагноза, если результат отрицательный.

Специфичность – доля тех, у кого результат теста оказался отрицательным, среди всех людей, не имеющих болезни (состояния). Это мера вероятности того, что с помощью теста удастся правильно идентифицировать людей, не имеющих болезни. В клинике тест с высокой специфичностью полезен для включения диагноза в число возможных, если результат положительный.

Простейший пример: если с помощью некой методики из десяти больных людей выявлены девять, то ее чувствительность равна 90 процентам. Понятно, что все это определяется на больших группах людей, то есть речь идет о тысячах или десятках тысяч пациентов, ведь 90 процентов могут выглядеть по-разному: это и 9, и 10, и 9000 из 10 000. То же самое со специфичностью: чем выше цифра в процентах и чем на большем количестве народу она проверена, тем лучше.

Возникает резонный вопрос: а откуда известно, что люди, на которых проверялся новый тест, действительно больны или определенно не больны? Для этого существует «золотой стандарт» – проверенный и многократно обкатанный в клинических условиях метод диагностики. Именно он считается последней инстанцией, с ним сравнивают новичков. Бывает и такое, что инновационные разработки оказываются эффективнее предшественников. В этом случае они сменяют морально и физически устаревшие подходы на троне «золотого стандарта». Так в свое время было, например, с полимеразной цепной реакцией (ПЦР).

Нос против рака

Люди используют особенности собачьего нюха на протяжении тысячелетий. Многие животные полагаются в основном на нюх – что во время охоты, причем как в роли нападающего, так и в роли жертвы, что для меж- и внутривидового общения. Волки и их одомашненные потомки в этом смысле не исключение, они тоже относятся к макросматикам (от др. – греч. «макро» – «большой» и «осме» – «обоняние»), способным учуять вещество в концентрации один на триллион (1:1012). Чтобы понять, сколько это, представьте себе бассейн «Олимпийский» в Москве. Теперь мысленно расположите 20 таких бассейнов квадратом 4×5 и капните в полученный объем воды одну каплю крови. Собака сможет ее учуять. Акула, к слову, тоже.

Псы воспринимают весь окружающий мир через призму запахов. Они способны определять едва заметные градиенты, то есть даже малейшие различия в концентрации, и таким образом отслеживать «историю» запаха – откуда он пришел и в какую сторону ушел. Долгое время собаки выступают в роли ищеек, выслеживая преступников и нарушителей границы, разыскивая пропавших людей, обнаруживая замаскированную взрывчатку и тщательно спрятанные наркотики.

Мысль о том, что четвероногих нюхачей можно приспособить к диагностике такого грозного заболевания, как рак, была впервые высказана лишь в 1989 году. В апрельском номере журнала The Lancet появилось короткое письмо[12] двух британских дерматологов из госпиталя Королевского колледжа Лондона. Хайвел Уильямс и Андрес Пемброук описали очень интересный случай из своей практики. К ним обратилась 44-летняя женщина с просьбой осмотреть родинку на правом бедре. Образование было всего 1,86 миллиметра в диаметре и изначально никаких подозрений не вызывало. Однако при детальном обследовании выявили меланому – самое опасное злокачественное новообразование кожи. Стадия развития опухоли была самой ранней – in situ, как говорят медики, то есть без распространения в окружающие ткани.

Пациентку прооперировали, а затем доктора поинтересовались, как ей удалось столь удачно заподозрить такую непростую патологию. Ответ их обескуражил: отличным диагностом оказалась собака, которая по несколько минут в день тщательно обнюхивала именно эту родинку, громко вздыхала, тыкалась носом в бедро женщины и скулила. Хозяйка поначалу игнорировала странное поведение животного, но в один прекрасный день питомица попыталась выгрызть проблемный участок кожи, после чего визит к врачу стал делом решенным.

Уильямс и Пемброук высказали предположение, что бесконтрольно размножающиеся клетки меланомы начали в большом количестве синтезировать какой-то особый белок. Его и почувствовала собака. Зачем это нужно животному? Ответ прост: устранение уязвимости. Пока хозяин жив-здоров, он может бесперебойно обеспечивать еду и укрытие, так что питомец крайне заинтересован в сохранении status quo и активно мониторит ситуацию, отслеживая малейшие отклонения от привычного положения вещей.

Первая практическая реализация идеи состоялась лишь 15 лет спустя. И сначала лохматым диагностам предлагали наиболее сильно пахнущую даже с человеческой точки зрения субстанцию – мочу. Целью, которую надо было распознать, стал рак мочевого пузыря. Исследование проводилось на базе госпиталя британского городка Амерсхэма, псов предоставлял питомник поводырей, а за обработку информации отвечал Оксфордский университет.

Результаты, опубликованные в сентябрьском номере British Medical Journal за 2004 год[13], оказались интересными, но не впечатляющими. Сначала собакам предоставили обучающие образцы – мочу 36 пациентов 48–90 лет с подтвержденным диагнозом, а затем «попросили» протестировать мочу добровольцев 18–85 лет. Предварительно обученные псы справились с 41 процентом заданий, правильно определив рак в 22 из 54 предложенных проб. Лучшими стали кокер-спаниели Тэнгл и Бидди: они были правы в 56 процентах случаев. Многофакторный анализ, проведенный в Оксфорде, показал, что животные действительно унюхивали в моче нечто не зависящее от других химических веществ, определяемых при помощи стандартных методов лабораторной диагностики.

После этого «собачью жилу» стали активно разрабатывать, исследования посыпались как из рога изобилия. Почти сразу наметилось наиболее перспективное направление – рак легких. В 2006 году в совместном эксперименте американских и польских ученых трем молодым (7–18 месяцев) золотистым ретриверам и двум португальским водолазам предлагались пробирки с хорошо впитывающей тканью, где содержался выдыхаемый пациентами воздух. После курса обучения собаки продемонстрировали невероятные результаты, показав 99-процентную чувствительность и 99-процентную же специфичность, то есть правильно отделили больных от здоровых, практически не перепутав их между собой. Интереснее всего, что с одинаковой легкостью псы определяли и четвертую стадию рака, и первую, самую сложную для диагностики[14].

Более поздние исследования таких великолепных результатов не продемонстрировали, тем не менее они оставались достаточно высокими: чувствительность – 71–83, специфичность – 93–95 процентов[15]. Кроме того, собакам не мешали различные фоновые заболевания (например, если рак сочетался с хронической обструктивной болезнью легких), а также запахи табака и пищи.

Нос против микробов

Госпитальная инфекция – настоящий бич медицины. Стационары, где пациенты, по идее, должны лечиться, нередко становятся источником дополнительных проблем.

Штаммы, вырастающие в больницах, отличаются злостностью и злобностью, большинство антибиотиков они в прямом смысле слова едят, а справиться с ними может очень ограниченный перечень препаратов, сокращающийся с каждым годом.

 

Микробиологическая диагностика – дело довольно долгое и хлопотное, даже несмотря на то, что появление полимеразной цепной реакции значительно упростило ее. Поэтому потребность в быстрых и вместе с тем надежных методах, позволяющих определять возбудителей инфекции, все еще сохраняется. И тут носы макросматиков могут пригодиться.

Поводов для оптимизма несколько. Первый – бигль по кличке Клифф. Голландские ученые в 2012 году сумели натаскать этого активного и хулиганистого, но несомненно талантливого пса на бактерию под названием Clostridium difficile[16]. Микроб знаменит тем, что часто становится виновником тяжелых и устойчивых к антибиотикам диарей в госпиталях и домах престарелых. Надо сказать, запах кала при этой инфекции весьма характерный, что может заметить и человек. Бигль же за два месяца навострился выявлять даже неуловимые для людского носа концентрации. Чувствительность пес показал фантастическую: все 50 предложенных проб, содержащих бактерию, он определил правильно. А вот специфичность чуть подкачала: трижды из 50 раз лохматый нюхач среагировал на достоверно чистые пробы как на зараженные.

Но самое интересное, что продукты жизнедеятельности клостридий Клифф чуял не только в выделениях пациентов, но и в воздухе. Пса водили по палатам и фиксировали его реакцию. Он правильно определил 265 из 270 чистых помещений и 25 из 30 зараженных, причем для полной инспекции и «принятия решения» ему требовалось лишь 10 минут! Так оперативно не работает ни одна из существующих диагностических методик.

Второй повод для оптимизма зовут Тариком, и он – гигантская сумчатая крыса, живущая в Мозамбике, в лаборатории Университета Эдуарду Мондлане. Воспитанные учеными, Тарик и восемь его сородичей умеют распознавать туберкулез по образцу мокроты. С 2013 года через их шустрые лапы проходят три четверти образцов, собираемых в медицинских учреждениях мозамбикской столицы Мапуту[17].

Животные-диагносты выгодны по многим параметрам. В том числе по затратам. К тому же они работают быстрее людей и ошибаются гораздо реже.

Технология проста: под пол клетки с животным ставится лоток с 10 пробами мокроты. Крыса их обнюхивает и начинает царапать пол над подозрительным объектом. Сумчатый лаборант обрабатывает 5 лотков за 8 минут. Человеку, вооруженному микроскопом, на выполнение аналогичного объема работы потребовался бы целый день. К тому же, как показала практика, люди ошибаются чаще.

За первые 16 месяцев в рамках государственной программы через необычных диагностов прошло 12 500 пациентов, у 1700 из которых был обнаружен туберкулез. Понятно, что крысам не доверяют безоговорочно: их результаты перепроверяют тремя различными способами. Тем не менее животные выгодны по многим параметрам. В том числе по затратам. Обучение каждого из них обходится в 6700–8000 долларов, а живут сумчатые крысы до 8 лет, в то время как автоматический анализатор с примерно такими же возможностями стоит около 17 тысяч, не считая расходников.

Власти Мозамбика надеются, что Всемирная организация здравоохранения (ВОЗ) одобрит этот метод диагностики, ведь в стране только за один год туберкулез уносит около 60 тысяч жизней. Да, сумчатые лаборанты несовершенны, в частности, они не способны отличить обычный вариант инфекции от лекарственно-устойчивого. И все же для небогатых государств специально обученные животные могут стать ощутимым подспорьем. Кстати, аналогичная программа с 2008 года разрабатывается и в Танзании, где результаты тоже более чем обнадеживающие.

Глаза против рака

Если животные полагаются преимущественно на нюх, то птицам необходимо острое зрение. Обычный городской голубь в этом смысле – одна из совершеннейших систем. Впечатляющее периферическое зрение, пять различных рецепторов сетчатки, способность видеть ультрафиолет – все это не могло не натолкнуть ученых на мысль о том, чтобы приобщить голубей к распознаванию изображений.

Этими птицами интересовался еще Беррес Фредерик Скиннер, гарвардский бихевиорист, известный в первую очередь работами по так называемому оперантному научению (learning by doing). Помимо экспериментов по выработке ритуального поведения у сизарей во время Второй мировой войны Скиннер также занимался созданием необычной системы наведения для ВМС США – проектом «Голубь»[18]. Три птицы, помещенные в головную часть управляемого боеприпаса, должны были визуально контролировать следование к цели и при необходимости корректировать траекторию полета, ударяя клювом по специальному экрану. Рули снаряда отклонялись только при большинстве «голосов», то есть как минимум две птицы должны были дать команду на корректировку курса. Скиннер полагал, что точность выведения на цель с такой системой может достигать плюс-минус 6 метров (неслыханная для тех времен цифра). Военные посчитали идею эксцентричной, но выделили на исследования 250 тысяч долларов. В итоге программу свернули в октябре 1944 года, затем возобновили в 1948-м, окончательно отказавшись от нее лишь в 1953-м, когда была убедительно доказана надежность электронных систем наведения.

Неудивительно, что наработками Скиннера решили воспользоваться и в медицинских целях. В ноябре 2015 года в журнале PLOS ONE была опубликована любопытная статья[19] патолога Ричарда Левенсона из Калифорнийского университета, психолога Эдварда Вассермана из Университета Айовы и примкнувших к ним исследователей. Они попробовали использовать голубей для диагностики. Пока что только одной патологии – рака молочной железы.

Птицу помещали в модифицированный «ящик Скиннера», где ей, чтобы получить еду, нужно было выполнить определенное действие. В данном случае – клюнуть сенсорный экран, на котором демонстрировались фотографии гистологических препаратов. Если сизарь правильно «ставил диагноз», то есть клевал левую или правую сторону экрана, кормушка открывалась, если неправильно – он оставался голодным. Таким образом птицы научились отличать норму от патологии за несколько часов. Через месяц тренировок они уже в 80 процентах случаев давали верный ответ. А если 16 подопытных голубей использовали в качестве нейросети: объединяли все «диагнозы» и выбирали самый частый ответ, то цифра доходила до 99.

Птицы справились и с усложненной задачей: они уверенно находили изменения в тканях, даже если изображения препаратов делали монохромными, выровненными по яркости, контрастности и насыщенности, с разными степенями компрессии. Мало того, голуби научились разбираться и в маммограммах – черно-белых рентгеновских изображениях молочных желез, в которых они лучше всего находили участки обызвествления (кальцификаты).

В пользу птиц, как и в случае с собаками и крысами, сыграло сразу несколько факторов: дешевизна, скорость и точность. Люди, оценивая гистологические препараты и маммограммы, допускают больше ошибок и тратят на ту же работу гораздо больше времени. Компьютеризированные системы анализа сложных изображений обходятся почти без ошибок, но стоят десятки, а иногда и сотни тысяч долларов. Понятно, что заменить опытного гистолога или мощное программное обеспечение голуби вряд ли смогут, но удачно дополнить – вполне. Тем более что планы у Левенсона и Вассермана грандиозные: они хотят научить сизарей отличать доброкачественные опухоли молочной железы от злокачественных, а затем перейти и к другим разновидностям и локализациям онкопатологии.

* * *

Как мы только что убедились, диагностика с привлечением животных слегка выбивается за рамки привычного подхода к разработке и оценке медицинских методик. Да, ученые не знают всех тонкостей собачьего обоняния или голубиного зрения, да, Клифф не расскажет, какие маркерные вещества клостридий он вынюхал. Тем не менее при помощи других научно доказанных методов диагностики можно проверить результаты, полученные животными и птицами, определить специфичность и чувствительность таких тестов, то есть перевести их из разряда забавных лабораторных экспериментов в практическое русло медицинской науки.

12Williams H., Pembroke A. Sniffer dogs in the melanoma clinic? // The Lancet, 1989. Vol. 333, № 8640. 734. DOI: 10.1016/S0140-6736(89)92257-5.
13Willis C. M. et al. Olfactory detection of human bladder cancer by dogs: proof of principle study // BMJ, 2004. 329. 712.
14McCulloch M. et al. Diagnostic Accuracy of Canine Scent Detection in Early— and Late-Stage Lung and Breast Cancers // Integrative Cancer Therapies, 2006. March; 5. 30–39. DOI: 10.1177/1534735405285096.
15R. Ehmann et al. Canine scent detection in the diagnosis of lung cancer: Revisiting a puzzling phenomenon // European Respiratory Journal, 2011, doi: 10.1183/09031936.00051711.
16Bomers M. K. et al. Using a dog’s superior olfactory sensitivity to identify Clostridium difficile in stools and patients: proof of principle study // BMJ, 2012. 345: e7396.
17Giant Rats Trained to Sniff Out Tuberculosis in Africa // National Geographic, 2014. URL: http://news.nationalgeographic.com/news/2014/08/140816-rats-tuberculosis-smell-disease-health-animals-world/ (дата обращения: 16.01.2016).
18Skinner B. F. Pigeons in a pelican // American Psychologist, 1960. 15, 28–37. Reprinted in: Skinner B. F. Cumulative record (3rd ed.). – New York: Appleton-Century-Crofts, 1972. 574–591.
19Levenson R. M. et al. Pigeons (Columba livia) as Trainable Observers of Pathology and Radiology Breast Cancer Images // PLOS ONE, 2015. DOI: 10.1371/journal.pone.0141357.